-- hu_dp -- Data path for Update H using stream of weights -- Trivial fix point implementation library ieee; use ieee.std_logic_1164.all; use work.pkg_sbs.all; entity hu_dp is generic ( K : natural := 3; -- additional bits for sum B : natural := 10); -- bitwidth of input port ( clk, rstn : in std_logic; ctr_hu : in std_logic_vector(BW_HU_CTR-1 downto 0); -- Control for data path loc_h : out std_logic_vector(ADDR_H_MAX-1 downto 0); -- Current location in H eps : in std_logic_vector(B-1 downto 0); wi : in std_logic_vector(B-1 downto 0); -- stream of weights hi : in std_logic_vector(B-1 downto 0); -- stream of state ho : out std_logic_vector(B-1 downto 0)); -- stream of states end entity hu_dp; library ieee; use ieee.numeric_std.all; architecture rtl of hu_dp is -- Memory subtype word is std_logic_vector(B-1 downto 0); type array_as_h_w is array (N_H_MAX-1 downto 0) of word; signal mem_hp : array_as_h_w; -- State (internal) signal mem_hw : array_as_h_w; -- Copy of w*h signal addr_wr, addr_nxt : std_logic_vector(ADDR_H_MAX-1 downto 0); -- Address -- Data path for hp (i.t. h un-normalized) and hw (hp*w) signal hp_new, hw_nxt : unsigned(2*B-1 downto 0); signal hp_new_rg, hp_p, h_eff : std_logic_vector(B-1 downto 0); signal hw_p : std_logic_vector(B-1 downto 0); -- Accumulators for normalization signal sum_hw, sum_hw_nxt : std_logic_vector(B-1 downto 0); -- Running sum hw signal sum_hw_p, sum_hw_p_nxt : std_logic_vector(B-1 downto 0); -- Saved sum hw of previous signal sum_hp, sum_hp_nxt : std_logic_vector(B-1 downto 0); -- Running sum hp signal sum_hp_p, sum_hp_p_nxt : std_logic_vector(B-1 downto 0); -- Saved sum hw of previous (normalization) -- Control signals signal ctr_sel_ini, ctr_sum_ini, ctr_update_sum, ctr_update_sum2 : std_logic; signal ctr_addr_rst, ctr_addr_inc, ctr_write_hw : std_logic; signal ctr_wr_hw, ctr_wr_hp : std_logic; begin -- architecture rtlf -- Get control signals ctr_sel_ini <= ctr_hu(0); ctr_sum_ini <= ctr_hu(1); ctr_update_sum <= ctr_hu(2); ctr_addr_rst <= ctr_hu(3); ctr_addr_inc <= ctr_hu(4); ctr_write_hw <= ctr_hu(5); ctr_wr_hw <= ctr_hu(6); ctr_wr_hp <= ctr_hu(6); ctr_update_sum2 <= ctr_hu(7); -- Main calculation hp_new <= unsigned(hp_p) * unsigned(sum_hw_p) + unsigned(sum_hp_p) * unsigned(hw_p) ; -- Mux to select first h or saved one h_eff <= hi when ctr_sel_ini='1' else hp_new_rg; -- Calculate hw hw_nxt <= unsigned(h_eff) * unsigned(wi) ; -- Output h (note latency of a complete group) ho <= h_eff; -- Accumulate hw and hp sum_hw_nxt <= std_logic_vector(hw_nxt(2*B-1 downto B)) when ctr_sum_ini='1' else std_logic_vector(unsigned(sum_hw) + hw_nxt(2*B-1 downto B)); sum_hw_p_nxt <= (others=>'0') when ctr_update_sum='1' else sum_hw when ctr_update_sum2='1' else sum_hw_p; sum_hp_nxt <= h_eff when ctr_sum_ini='1' else std_logic_vector(unsigned(sum_hp) + unsigned(h_eff)); -- Accumulate h --sum_hp_p_nxt <= sum_hp_nxt * eps when ctr_update_sum='1' else sum_hp_p; sum_hp_p_nxt <= eps when ctr_update_sum='1' else std_logic_vector(hp_new(2*B-1 downto B)) when ctr_update_sum2='1' else sum_hp_p; -- Read from memory --hw_p <= mem_hw(to_integer(unsigned(addr_nxt))); hw_p <= mem_hw(to_integer(unsigned(addr_nxt))) when ctr_update_sum2='0' else sum_hp; -- Put sum_hp in mult hp_p <= mem_hp(to_integer(unsigned(addr_nxt))); -- Address calculation addr_nxt <= (others => '0') when ctr_addr_rst='1' else std_logic_vector(unsigned(addr_wr) + 1) when ctr_addr_inc='1' else addr_wr; loc_h <= addr_wr; -- Output for ctrl path -- Registers rg: process (clk, rstn) is begin -- process pipe1 if rstn = '0' then hp_new_rg <= (others=>'0'); sum_hw <= (others=>'0'); sum_hw_p <= (others=>'0'); sum_hp <= (others=>'0'); sum_hp_p <= (others=>'0'); addr_wr <= (others => '0'); elsif clk'event and clk = '1' then hp_new_rg <= std_logic_vector(hp_new(2*B-1 downto B)); sum_hw <= sum_hw_nxt; sum_hw_p <= sum_hw_p_nxt; sum_hp <= sum_hp_nxt; sum_hp_p <= sum_hp_p_nxt; addr_wr <= addr_nxt; end if; end process rg; -- Memory mem: process (clk) is begin -- process mem if clk'event and clk = '1' then -- rising clock edge if ctr_wr_hw='1' then mem_hw(to_integer(unsigned(addr_wr))) <= std_logic_vector(hw_nxt(2*B-1 downto B)); end if; if ctr_wr_hp='1' then mem_hp(to_integer(unsigned(addr_wr))) <= h_eff; end if; end if; end process mem; end architecture rtl;