134 lines
3.9 KiB
Python
134 lines
3.9 KiB
Python
|
import torch
|
||
|
from L1NormLayer import L1NormLayer
|
||
|
from append_parameter import append_parameter
|
||
|
from MaskLayerFeatures import MaskLayerFeatures
|
||
|
|
||
|
|
||
|
def append_block(
|
||
|
network: torch.nn.Sequential,
|
||
|
out_channels: int,
|
||
|
test_image: torch.Tensor,
|
||
|
parameter_cnn_top: list[torch.nn.parameter.Parameter],
|
||
|
parameter_nnmf: list[torch.nn.parameter.Parameter],
|
||
|
parameter_norm: list[torch.nn.parameter.Parameter],
|
||
|
torch_device: torch.device,
|
||
|
dilation: tuple[int, int] | int = 1,
|
||
|
padding: tuple[int, int] | int = 0,
|
||
|
stride: tuple[int, int] | int = 1,
|
||
|
kernel_size: tuple[int, int] = (5, 5),
|
||
|
epsilon: float | None = None,
|
||
|
positive_function_type: int = 0,
|
||
|
beta: float | None = None,
|
||
|
iterations: int = 20,
|
||
|
local_learning: bool = False,
|
||
|
local_learning_kl: bool = False,
|
||
|
momentum: float = 0.1,
|
||
|
track_running_stats: bool = False,
|
||
|
last_layer: bool = False,
|
||
|
) -> torch.Tensor:
|
||
|
|
||
|
kernel_size_internal: list[int] = [kernel_size[-2], kernel_size[-1]]
|
||
|
|
||
|
if kernel_size[0] < 1:
|
||
|
kernel_size_internal[0] = test_image.shape[-2]
|
||
|
|
||
|
if kernel_size[1] < 1:
|
||
|
kernel_size_internal[1] = test_image.shape[-1]
|
||
|
|
||
|
# Main
|
||
|
network.append(torch.nn.ReLU())
|
||
|
test_image = network[-1](test_image)
|
||
|
|
||
|
# I need the output size
|
||
|
mock_output = (
|
||
|
torch.nn.functional.conv2d(
|
||
|
torch.zeros(
|
||
|
1,
|
||
|
1,
|
||
|
test_image.shape[2],
|
||
|
test_image.shape[3],
|
||
|
),
|
||
|
torch.zeros((1, 1, kernel_size_internal[0], kernel_size_internal[1])),
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
)
|
||
|
.squeeze(0)
|
||
|
.squeeze(0)
|
||
|
)
|
||
|
network.append(
|
||
|
torch.nn.Unfold(
|
||
|
kernel_size=(kernel_size_internal[-2], kernel_size_internal[-1]),
|
||
|
dilation=dilation,
|
||
|
padding=padding,
|
||
|
stride=stride,
|
||
|
)
|
||
|
)
|
||
|
test_image = network[-1](test_image)
|
||
|
|
||
|
network.append(
|
||
|
torch.nn.Fold(
|
||
|
output_size=mock_output.shape,
|
||
|
kernel_size=(1, 1),
|
||
|
dilation=1,
|
||
|
padding=0,
|
||
|
stride=1,
|
||
|
)
|
||
|
)
|
||
|
test_image = network[-1](test_image)
|
||
|
|
||
|
network.append(L1NormLayer())
|
||
|
test_image = network[-1](test_image)
|
||
|
|
||
|
network.append(
|
||
|
torch.nn.Conv2d(
|
||
|
in_channels=test_image.shape[1],
|
||
|
out_channels=out_channels,
|
||
|
kernel_size=(1, 1),
|
||
|
bias=False,
|
||
|
).to(torch_device)
|
||
|
)
|
||
|
test_image = network[-1](test_image)
|
||
|
append_parameter(module=network[-1], parameter_list=parameter_nnmf)
|
||
|
|
||
|
if (test_image.shape[-1] > 1) or (test_image.shape[-2] > 1):
|
||
|
network.append(
|
||
|
torch.nn.BatchNorm2d(
|
||
|
num_features=test_image.shape[1],
|
||
|
momentum=momentum,
|
||
|
track_running_stats=track_running_stats,
|
||
|
device=torch_device,
|
||
|
)
|
||
|
)
|
||
|
test_image = network[-1](test_image)
|
||
|
append_parameter(module=network[-1], parameter_list=parameter_norm)
|
||
|
|
||
|
if last_layer is False:
|
||
|
|
||
|
network.append(torch.nn.ReLU())
|
||
|
test_image = network[-1](test_image)
|
||
|
|
||
|
network.append(
|
||
|
MaskLayerFeatures(
|
||
|
in_channels=test_image.shape[1],
|
||
|
device=torch_device,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
test_image = network[-1](test_image)
|
||
|
append_parameter(module=network[-1], parameter_list=parameter_cnn_top)
|
||
|
|
||
|
if (test_image.shape[-1] > 1) or (test_image.shape[-2] > 1):
|
||
|
network.append(
|
||
|
torch.nn.BatchNorm2d(
|
||
|
num_features=test_image.shape[1],
|
||
|
device=torch_device,
|
||
|
momentum=momentum,
|
||
|
track_running_stats=track_running_stats,
|
||
|
)
|
||
|
)
|
||
|
test_image = network[-1](test_image)
|
||
|
append_parameter(module=network[-1], parameter_list=parameter_norm)
|
||
|
|
||
|
return test_image
|