Bernstein_Poster_2024/avg_pooling_nnmf_sp1.01_x2/NNMF2d.py

259 lines
7.8 KiB
Python
Raw Permalink Normal View History

2024-11-05 18:20:02 +01:00
import torch
from non_linear_weigth_function import non_linear_weigth_function
class NNMF2d(torch.nn.Module):
in_channels: int
out_channels: int
weight: torch.Tensor
iterations: int
epsilon: float | None
init_min: float
init_max: float
beta: torch.Tensor | None
positive_function_type: int
local_learning: bool
local_learning_kl: bool
def __init__(
self,
in_channels: int,
out_channels: int,
device=None,
dtype=None,
iterations: int = 20,
epsilon: float | None = None,
init_min: float = 0.0,
init_max: float = 1.0,
beta: float | None = None,
positive_function_type: int = 0,
local_learning: bool = False,
local_learning_kl: bool = False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.positive_function_type = positive_function_type
self.init_min = init_min
self.init_max = init_max
self.in_channels = in_channels
self.out_channels = out_channels
self.iterations = iterations
self.local_learning = local_learning
self.local_learning_kl = local_learning_kl
self.weight = torch.nn.parameter.Parameter(
torch.empty((out_channels, in_channels), **factory_kwargs)
)
if beta is not None:
self.beta = torch.nn.parameter.Parameter(torch.empty((1), **factory_kwargs))
self.beta.data[0] = beta
else:
self.beta = None
self.reset_parameters()
self.functional_nnmf2d = FunctionalNNMF2d.apply
self.epsilon = epsilon
def extra_repr(self) -> str:
s: str = f"{self.in_channels}, {self.out_channels}"
if self.epsilon is not None:
s += f", epsilon={self.epsilon}"
s += f", pfunctype={self.positive_function_type}"
s += f", local_learning={self.local_learning}"
if self.local_learning:
s += f", local_learning_kl={self.local_learning_kl}"
return s
def reset_parameters(self) -> None:
torch.nn.init.uniform_(self.weight, a=self.init_min, b=self.init_max)
def forward(self, input: torch.Tensor) -> torch.Tensor:
positive_weights = non_linear_weigth_function(
self.weight, self.beta, self.positive_function_type
)
positive_weights = positive_weights / (
positive_weights.sum(dim=1, keepdim=True) + 10e-20
)
h_dyn = self.functional_nnmf2d(
input,
positive_weights,
self.out_channels,
self.iterations,
self.epsilon,
self.local_learning,
self.local_learning_kl,
)
return h_dyn
class FunctionalNNMF2d(torch.autograd.Function):
@staticmethod
def forward( # type: ignore
ctx,
input: torch.Tensor,
weight: torch.Tensor,
out_channels: int,
iterations: int,
epsilon: float | None,
local_learning: bool,
local_learning_kl: bool,
) -> torch.Tensor:
power_value: float = 1.01
# Prepare h
h = torch.full(
(input.shape[0], out_channels, input.shape[-2], input.shape[-1]),
1.0 / float(out_channels),
device=input.device,
dtype=input.dtype,
)
h = h.movedim(1, -1)
input = input.movedim(1, -1)
for _ in range(0, iterations):
reconstruction = torch.nn.functional.linear(h, weight.T)
reconstruction += 1e-20
if epsilon is None:
h *= torch.nn.functional.linear((input / reconstruction), weight)
else:
h *= 1 + epsilon * torch.nn.functional.linear(
(input / reconstruction), weight
)
h /= h.sum(-1, keepdim=True) + 10e-20
h = h**power_value
h /= h.sum(-1, keepdim=True) + 10e-20
h = h.movedim(-1, 1)
input = input.movedim(-1, 1)
# ###########################################################
# Save the necessary data for the backward pass
# ###########################################################
ctx.save_for_backward(input, weight, h)
ctx.local_learning = local_learning
ctx.local_learning_kl = local_learning_kl
assert torch.isfinite(h).all()
return h
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_output: torch.Tensor) -> tuple[ # type: ignore
torch.Tensor,
torch.Tensor | None,
None,
None,
None,
None,
None,
]:
# ##############################################
# Default values
# ##############################################
grad_weight: torch.Tensor | None = None
# ##############################################
# Get the variables back
# ##############################################
(input, weight, h) = ctx.saved_tensors
# The back prop gradient
h = h.movedim(1, -1)
grad_output = grad_output.movedim(1, -1)
input = input.movedim(1, -1)
big_r = torch.nn.functional.linear(h, weight.T)
big_r_div = 1.0 / (big_r + 1e-20)
factor_x_div_r = input * big_r_div
grad_input: torch.Tensor = (
torch.nn.functional.linear(h * grad_output, weight.T) * big_r_div
)
del big_r_div
# The weight gradient
if ctx.local_learning is False:
del big_r
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
).T,
(factor_x_div_r * grad_input)
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
)
.T,
)
grad_weight += torch.nn.functional.linear(
(h * grad_output)
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
)
.T,
factor_x_div_r.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
).T,
)
else:
if ctx.local_learning_kl:
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
).T,
factor_x_div_r.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
).T,
)
else:
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
).T,
(2 * (input - big_r))
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
)
.T,
)
grad_input = grad_input.movedim(-1, 1)
assert torch.isfinite(grad_input).all()
assert torch.isfinite(grad_weight).all()
return (
grad_input,
grad_weight,
None,
None,
None,
None,
None,
)