Bernstein_Poster_2024/basis_nnmf_convnnmf/NNMF2dConvGroupedAutograd.py

209 lines
6.8 KiB
Python
Raw Normal View History

2024-10-21 16:43:42 +02:00
import torch
from non_linear_weigth_function import non_linear_weigth_function
class NNMF2dConvGrouped(torch.nn.Module):
in_channels: int
out_channels: int
weight: torch.Tensor
iterations: int
epsilon: float | None
init_min: float
init_max: float
beta: torch.Tensor | None
positive_function_type: int
convolution_contribution_map: None | torch.Tensor = None
convolution_contribution_map_enable: bool
convolution_ip_norm: bool
kernel_size: tuple[int, ...]
stride: tuple[int, ...]
padding: str | tuple[int, ...]
dilation: tuple[int, ...]
output_size: None | torch.Tensor = None
groups: int
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: tuple[int, int],
groups: int = 1,
device=None,
dtype=None,
iterations: int = 20,
epsilon: float | None = None,
init_min: float = 0.0,
init_max: float = 1.0,
beta: float | None = None,
positive_function_type: int = 0,
convolution_contribution_map_enable: bool = False,
stride: tuple[int, int] = (1, 1),
padding: str | tuple[int, int] = (0, 0),
dilation: tuple[int, int] = (1, 1),
convolution_ip_norm: bool = True,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
valid_padding_strings = {"same", "valid"}
if isinstance(padding, str):
if padding not in valid_padding_strings:
raise ValueError(
f"Invalid padding string {padding!r}, should be one of {valid_padding_strings}"
)
if padding == "same" and any(s != 1 for s in stride):
raise ValueError(
"padding='same' is not supported for strided convolutions"
)
self.positive_function_type = positive_function_type
self.init_min = init_min
self.init_max = init_max
self.groups = groups
assert (
in_channels % self.groups == 0
), f"Can't divide without rest {in_channels} / {self.groups}"
self.in_channels = in_channels // self.groups
self.out_channels = out_channels
self.iterations = iterations
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.convolution_contribution_map_enable = convolution_contribution_map_enable
self.convolution_ip_norm = convolution_ip_norm
self.weight = torch.nn.parameter.Parameter(
torch.empty(
(out_channels, self.in_channels, *kernel_size), **factory_kwargs
)
)
if beta is not None:
self.beta = torch.nn.parameter.Parameter(torch.empty((1), **factory_kwargs))
self.beta.data[0] = beta
else:
self.beta = None
self.reset_parameters()
self.epsilon = epsilon
def extra_repr(self) -> str:
s: str = f"{self.in_channels}, {self.out_channels},"
s += f"kernel_size={self.kernel_size},"
s += f"stride={self.stride}, iterations={self.iterations}"
if self.epsilon is not None:
s += f", epsilon={self.epsilon}"
s += f", pfunctype={self.positive_function_type}"
s += f", groups={self.groups}"
if self.padding != (0,) * len(self.padding):
s += f", padding={self.padding}"
if self.dilation != (1,) * len(self.dilation):
s += f", dilation={self.dilation}"
return s
def reset_parameters(self) -> None:
torch.nn.init.uniform_(self.weight, a=self.init_min, b=self.init_max)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if input.ndim == 2:
input = input.unsqueeze(-1)
if input.ndim == 3:
input = input.unsqueeze(-1)
if self.output_size is None:
self.output_size = torch.tensor(
torch.nn.functional.conv2d(
torch.zeros(
1,
input.shape[1],
input.shape[2],
input.shape[3],
device=self.weight.device,
dtype=self.weight.dtype,
),
torch.zeros_like(self.weight),
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
).shape,
requires_grad=False,
)
assert self.output_size is not None
positive_weights = non_linear_weigth_function(
self.weight, self.beta, self.positive_function_type
)
positive_weights = positive_weights / (
positive_weights.sum(dim=-1, keepdim=True) + 10e-20
)
input = input / (input.sum((1, 2, 3), keepdim=True) + 10e-20)
# Prepare h
self.output_size[0] = input.shape[0]
h = torch.full(
self.output_size.tolist(),
1.0 / float(self.output_size[1]),
device=input.device,
dtype=input.dtype,
)
if self.convolution_ip_norm:
pass
else:
h = h / (h.sum((1, 2, 3), keepdim=True) + 10e-20)
for _ in range(0, self.iterations):
factor_x_div_r: torch.Tensor = input / (
torch.nn.functional.conv_transpose2d(
h,
positive_weights,
stride=self.stride,
padding=self.padding, # type: ignore
dilation=self.dilation,
groups=self.groups,
)
+ 10e-20
)
if self.epsilon is None:
h = h * torch.nn.functional.conv2d(
factor_x_div_r,
positive_weights,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
)
else:
h = h * (
1
+ self.epsilon
* torch.nn.functional.conv2d(
factor_x_div_r,
positive_weights,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
)
)
if self.convolution_ip_norm:
h = h / (h.sum(1, keepdim=True) + 10e-20)
else:
h = h / (h.sum((1, 2, 3), keepdim=True) + 10e-20)
assert torch.isfinite(h).all()
return h