Bernstein_Poster_2024/max_pooling_mlp/non_linear_weigth_function.py

27 lines
782 B
Python
Raw Normal View History

2024-10-21 16:43:42 +02:00
import torch
def non_linear_weigth_function(
weight: torch.Tensor, beta: torch.Tensor | None, positive_function_type: int
) -> torch.Tensor:
if positive_function_type == 0:
positive_weights = torch.abs(weight)
elif positive_function_type == 1:
assert beta is not None
positive_weights = weight
max_value = torch.abs(positive_weights).max()
if max_value > 80:
positive_weights = 80.0 * positive_weights / max_value
positive_weights = torch.exp((torch.tanh(beta) + 1.0) * 0.5 * positive_weights)
elif positive_function_type == 2:
assert beta is not None
positive_weights = (torch.tanh(beta * weight) + 1.0) * 0.5
else:
positive_weights = weight
return positive_weights