import numpy as np import matplotlib.pyplot as plt number_of_noise_steps = 20 noise_scale = ( 0.5 * np.arange(0, number_of_noise_steps + 1) / float(number_of_noise_steps) ) # 1x data = np.load("avg_pooling_mlp/noise_picture_results.npy") plt.plot( noise_scale, data, label="MLP" ) data = np.load("basis_mlp/noise_picture_results.npy") plt.plot( noise_scale, data, label="MLP Basis" ) data = np.load("avg_pooling_nnmf/noise_picture_results.npy") plt.plot( noise_scale, data, label="NNMF" ) data = np.load("avg_pooling_nnmf_sp1.01/noise_picture_results.npy") plt.plot( noise_scale, data, label="NNMF Sparse 1.01" ) data = np.load("basis_nnmf/noise_picture_results.npy") plt.plot( noise_scale, data, label="NNMF Basis" ) # 2x data = np.load("avg_pooling_mlp_x2/noise_picture_results.npy") plt.plot( noise_scale, data, ":", label="MLP x2" ) data = np.load("basis_mlp_x2/noise_picture_results.npy") plt.plot( noise_scale, data, ":", label="MLP Basis x2" ) data = np.load("avg_pooling_nnmf_x2/noise_picture_results.npy") plt.plot( noise_scale, data, ":", label="NNMF x2" ) data = np.load("avg_pooling_nnmf_sp1.01_x2/noise_picture_results.npy") plt.plot( noise_scale, data, ":", label="NNMF Sparse 1.01 x2" ) data = np.load("basis_nnmf_x2/noise_picture_results.npy") plt.plot( noise_scale, data, ":", label="NNMF Basis x2" ) # 4x data = np.load("avg_pooling_mlp_x4/noise_picture_results.npy") plt.plot( noise_scale, data, "--", label="MLP x4" ) data = np.load("basis_mlp_x4/noise_picture_results.npy") plt.plot( noise_scale, data, "--", label="MLP Basis x4" ) data = np.load("avg_pooling_nnmf_x4/noise_picture_results.npy") plt.plot( noise_scale, data, "--", label="NNMF x4" ) data = np.load("avg_pooling_nnmf_sp1.01_x4/noise_picture_results.npy") plt.plot( noise_scale, data, "--", label="NNMF Sparse 1.01 x4" ) data = np.load("basis_nnmf_x4/noise_picture_results.npy") plt.plot( noise_scale, data, "--", label="NNMF Basis x4" ) plt.legend() plt.xlabel("eta") plt.ylabel("Performance [%]") plt.title("CIFAR10 Mix Picture") plt.show()