111 lines
3.7 KiB
Python
111 lines
3.7 KiB
Python
import torch
|
|
from append_parameter import append_parameter
|
|
|
|
|
|
def append_block(
|
|
network: torch.nn.Sequential,
|
|
out_channels: int,
|
|
test_image: torch.Tensor,
|
|
parameter_cnn_top: list[torch.nn.parameter.Parameter],
|
|
parameter_nnmf: list[torch.nn.parameter.Parameter],
|
|
parameter_norm: list[torch.nn.parameter.Parameter],
|
|
torch_device: torch.device,
|
|
dilation: tuple[int, int] | int = 1,
|
|
padding: tuple[int, int] | int = 0,
|
|
stride: tuple[int, int] | int = 1,
|
|
kernel_size: tuple[int, int] = (5, 5),
|
|
epsilon: float | None = None,
|
|
positive_function_type: int = 0,
|
|
beta: float | None = None,
|
|
iterations: int = 20,
|
|
local_learning: bool = False,
|
|
local_learning_kl: bool = False,
|
|
momentum: float = 0.1,
|
|
track_running_stats: bool = False,
|
|
last_layer: bool = False,
|
|
) -> torch.Tensor:
|
|
|
|
kernel_size_internal: list[int] = [kernel_size[-2], kernel_size[-1]]
|
|
|
|
if kernel_size[0] < 1:
|
|
kernel_size_internal[0] = test_image.shape[-2]
|
|
|
|
if kernel_size[1] < 1:
|
|
kernel_size_internal[1] = test_image.shape[-1]
|
|
|
|
# Main
|
|
network.append(torch.nn.ReLU())
|
|
test_image = network[-1](test_image)
|
|
|
|
network.append(
|
|
torch.nn.Conv2d(
|
|
in_channels=test_image.shape[1],
|
|
out_channels=out_channels,
|
|
kernel_size=(kernel_size_internal[-2], kernel_size_internal[-1]),
|
|
dilation=dilation,
|
|
padding=padding,
|
|
stride=stride,
|
|
device=torch_device,
|
|
)
|
|
)
|
|
test_image = network[-1](test_image)
|
|
append_parameter(module=network[-1], parameter_list=parameter_nnmf)
|
|
|
|
if (test_image.shape[-1] > 1) or (test_image.shape[-2] > 1):
|
|
network.append(
|
|
torch.nn.BatchNorm2d(
|
|
num_features=test_image.shape[1],
|
|
momentum=momentum,
|
|
track_running_stats=track_running_stats,
|
|
device=torch_device,
|
|
)
|
|
)
|
|
test_image = network[-1](test_image)
|
|
append_parameter(module=network[-1], parameter_list=parameter_norm)
|
|
|
|
if last_layer is False:
|
|
|
|
network.append(torch.nn.ReLU())
|
|
test_image = network[-1](test_image)
|
|
|
|
network.append(
|
|
torch.nn.Conv2d(
|
|
in_channels=test_image.shape[1],
|
|
out_channels=out_channels,
|
|
kernel_size=(1, 1),
|
|
stride=(1, 1),
|
|
padding=(0, 0),
|
|
bias=True,
|
|
device=torch_device,
|
|
)
|
|
)
|
|
# Init the cnn top layers 1x1 conv2d layers
|
|
for name, param in network[-1].named_parameters():
|
|
with torch.no_grad():
|
|
if name == "bias":
|
|
param.data *= 0
|
|
if name == "weight":
|
|
assert param.shape[-2] == 1
|
|
assert param.shape[-1] == 1
|
|
param[: param.shape[0], : param.shape[0], 0, 0] = torch.eye(
|
|
param.shape[0], dtype=param.dtype, device=param.device
|
|
)
|
|
param[param.shape[0] :, :, 0, 0] = 0
|
|
param[:, param.shape[0] :, 0, 0] = 0
|
|
|
|
test_image = network[-1](test_image)
|
|
append_parameter(module=network[-1], parameter_list=parameter_cnn_top)
|
|
|
|
if (test_image.shape[-1] > 1) or (test_image.shape[-2] > 1):
|
|
network.append(
|
|
torch.nn.BatchNorm2d(
|
|
num_features=test_image.shape[1],
|
|
device=torch_device,
|
|
momentum=momentum,
|
|
track_running_stats=track_running_stats,
|
|
)
|
|
)
|
|
test_image = network[-1](test_image)
|
|
append_parameter(module=network[-1], parameter_list=parameter_norm)
|
|
|
|
return test_image
|