Bernstein_Poster_2024/basis_nnmf_autograd/NNMF2dAutograd.py
David Rotermund a540a3f271 Initial
2024-10-21 16:43:42 +02:00

121 lines
3.5 KiB
Python

import torch
from non_linear_weigth_function import non_linear_weigth_function
class NNMF2dAutograd(torch.nn.Module):
in_channels: int
out_channels: int
weight: torch.Tensor
iterations: int
epsilon: float | None
init_min: float
init_max: float
beta: torch.Tensor | None
positive_function_type: int
local_learning: bool
local_learning_kl: bool
def __init__(
self,
in_channels: int,
out_channels: int,
device=None,
dtype=None,
iterations: int = 20,
epsilon: float | None = None,
init_min: float = 0.0,
init_max: float = 1.0,
beta: float | None = None,
positive_function_type: int = 0,
local_learning: bool = False,
local_learning_kl: bool = False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.positive_function_type = positive_function_type
self.init_min = init_min
self.init_max = init_max
self.in_channels = in_channels
self.out_channels = out_channels
self.iterations = iterations
self.local_learning = local_learning
self.local_learning_kl = local_learning_kl
self.weight = torch.nn.parameter.Parameter(
torch.empty((out_channels, in_channels), **factory_kwargs)
)
if beta is not None:
self.beta = torch.nn.parameter.Parameter(torch.empty((1), **factory_kwargs))
self.beta.data[0] = beta
else:
self.beta = None
self.reset_parameters()
self.epsilon = epsilon
def extra_repr(self) -> str:
s: str = f"{self.in_channels}, {self.out_channels}"
if self.epsilon is not None:
s += f", epsilon={self.epsilon}"
s += f", pfunctype={self.positive_function_type}"
s += f", local_learning={self.local_learning}"
if self.local_learning:
s += f", local_learning_kl={self.local_learning_kl}"
return s
def reset_parameters(self) -> None:
torch.nn.init.uniform_(self.weight, a=self.init_min, b=self.init_max)
def forward(self, input: torch.Tensor) -> torch.Tensor:
positive_weights = non_linear_weigth_function(
self.weight, self.beta, self.positive_function_type
)
positive_weights = positive_weights / (
positive_weights.sum(dim=1, keepdim=True) + 10e-20
)
# ---------------------
# Prepare h
h = torch.full(
(input.shape[0], self.out_channels, input.shape[-2], input.shape[-1]),
1.0 / float(self.out_channels),
device=input.device,
dtype=input.dtype,
)
h = h.movedim(1, -1)
input = input.movedim(1, -1)
for _ in range(0, self.iterations):
reconstruction = torch.nn.functional.linear(h, positive_weights.T)
reconstruction = reconstruction + 1e-20
if self.epsilon is None:
h = h * torch.nn.functional.linear(
(input / reconstruction), positive_weights
)
else:
h = h * (
1
+ self.epsilon
* torch.nn.functional.linear(
(input / reconstruction), positive_weights
)
)
h = h / (h.sum(-1, keepdim=True) + 10e-20)
h = h.movedim(-1, 1)
input = input.movedim(-1, 1)
assert torch.isfinite(h).all()
return h