2023-07-12 14:02:35 +02:00
|
|
|
import torch
|
|
|
|
import torchaudio as ta
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import trange
|
|
|
|
|
|
|
|
|
2023-07-14 22:33:18 +02:00
|
|
|
def convert_avi_to_npy(filename: str) -> np.ndarray:
|
2023-07-12 14:02:35 +02:00
|
|
|
capture_from_file = cv2.VideoCapture(filename + str(".avi"))
|
|
|
|
avi_length = int(capture_from_file.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
|
|
|
|
|
# To torch and beyond
|
|
|
|
data: np.ndarray | None = None
|
|
|
|
for i in trange(0, avi_length):
|
|
|
|
read_ok, frame = capture_from_file.read()
|
|
|
|
|
|
|
|
assert read_ok
|
|
|
|
|
|
|
|
if data is None:
|
|
|
|
data = np.empty(
|
|
|
|
(avi_length, frame.shape[0], frame.shape[1]),
|
|
|
|
dtype=np.float32,
|
|
|
|
)
|
|
|
|
assert data is not None
|
|
|
|
data[i, :, :] = frame.mean(axis=-1).astype(np.float32)
|
|
|
|
assert data is not None
|
|
|
|
np.save(filename + str(".npy"), data)
|
|
|
|
|
2023-07-14 22:33:18 +02:00
|
|
|
return data
|
|
|
|
|
2023-07-12 14:02:35 +02:00
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def to_remove(
|
|
|
|
data: torch.Tensor, whiten_k: torch.Tensor, whiten_mean: torch.Tensor
|
|
|
|
) -> torch.Tensor:
|
|
|
|
whiten_k = whiten_k[:, :, 0]
|
|
|
|
|
|
|
|
data = (data - whiten_mean.unsqueeze(0)) * whiten_k.unsqueeze(0)
|
|
|
|
data_svd = data.sum(dim=-1).sum(dim=-1).unsqueeze(-1).unsqueeze(-1)
|
|
|
|
|
|
|
|
factor = (data * data_svd).sum(dim=0, keepdim=True) / (data_svd**2).sum(
|
|
|
|
dim=0, keepdim=True
|
|
|
|
)
|
|
|
|
to_remove = data_svd * factor
|
|
|
|
to_remove /= whiten_k.unsqueeze(0) + 1e-20
|
|
|
|
to_remove += whiten_mean.unsqueeze(0)
|
|
|
|
|
|
|
|
return to_remove
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def calculate_svd(
|
|
|
|
input: torch.Tensor, lowrank_q: int = 6
|
|
|
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
|
|
selection = torch.flatten(
|
|
|
|
input.clone().movedim(0, -1),
|
|
|
|
start_dim=0,
|
|
|
|
end_dim=1,
|
|
|
|
)
|
|
|
|
|
|
|
|
whiten_mean = torch.mean(selection, dim=-1)
|
|
|
|
selection -= whiten_mean.unsqueeze(-1)
|
|
|
|
whiten_mean = whiten_mean.reshape((input.shape[1], input.shape[2]))
|
|
|
|
|
|
|
|
svd_u, svd_s, _ = torch.svd_lowrank(selection, q=lowrank_q)
|
|
|
|
|
|
|
|
whiten_k = (
|
|
|
|
torch.sign(svd_u[0, :]).unsqueeze(0) * svd_u / (svd_s.unsqueeze(0) + 1e-20)
|
|
|
|
)
|
|
|
|
whiten_k = whiten_k.reshape((input.shape[1], input.shape[2], svd_s.shape[0]))
|
|
|
|
eigenvalues = svd_s
|
|
|
|
|
|
|
|
return whiten_mean, whiten_k, eigenvalues
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def filtfilt(
|
|
|
|
input: torch.Tensor,
|
|
|
|
butter_a: torch.Tensor,
|
|
|
|
butter_b: torch.Tensor,
|
|
|
|
) -> torch.Tensor:
|
|
|
|
assert butter_a.ndim == 1
|
|
|
|
assert butter_b.ndim == 1
|
|
|
|
assert butter_a.shape[0] == butter_b.shape[0]
|
|
|
|
|
|
|
|
process_data: torch.Tensor = input.movedim(0, -1).detach().clone()
|
|
|
|
|
|
|
|
padding_length = 12 * int(butter_a.shape[0])
|
|
|
|
left_padding = 2 * process_data[..., 0].unsqueeze(-1) - process_data[
|
|
|
|
..., 1 : padding_length + 1
|
|
|
|
].flip(-1)
|
|
|
|
right_padding = 2 * process_data[..., -1].unsqueeze(-1) - process_data[
|
|
|
|
..., -(padding_length + 1) : -1
|
|
|
|
].flip(-1)
|
|
|
|
process_data_padded = torch.cat((left_padding, process_data, right_padding), dim=-1)
|
|
|
|
|
|
|
|
output = ta.functional.filtfilt(
|
|
|
|
process_data_padded.unsqueeze(0), butter_a, butter_b, clamp=False
|
|
|
|
).squeeze(0)
|
2023-07-13 11:05:07 +02:00
|
|
|
|
2023-07-12 14:02:35 +02:00
|
|
|
output = output[..., padding_length:-padding_length].movedim(-1, 0)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def butter_bandpass(
|
|
|
|
device: torch.device,
|
|
|
|
low_frequency: float = 0.1,
|
|
|
|
high_frequency: float = 1.0,
|
|
|
|
fs: float = 30.0,
|
|
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
import scipy
|
|
|
|
|
|
|
|
butter_b_np, butter_a_np = scipy.signal.butter(
|
|
|
|
4, [low_frequency, high_frequency], btype="bandpass", output="ba", fs=fs
|
|
|
|
)
|
|
|
|
butter_a = torch.tensor(butter_a_np, device=device, dtype=torch.float32)
|
|
|
|
butter_b = torch.tensor(butter_b_np, device=device, dtype=torch.float32)
|
|
|
|
return butter_a, butter_b
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def chunk_iterator(array: torch.Tensor, chunk_size: int):
|
|
|
|
for i in range(0, array.shape[0], chunk_size):
|
|
|
|
yield array[i : i + chunk_size]
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
2023-07-13 11:05:07 +02:00
|
|
|
def bandpass(
|
2023-07-12 14:02:35 +02:00
|
|
|
data: torch.Tensor,
|
|
|
|
device: torch.device,
|
|
|
|
low_frequency: float = 0.1,
|
|
|
|
high_frequency: float = 1.0,
|
|
|
|
fs=30.0,
|
|
|
|
filtfilt_chuck_size: int = 10,
|
|
|
|
) -> torch.Tensor:
|
|
|
|
butter_a, butter_b = butter_bandpass(
|
|
|
|
device=device,
|
|
|
|
low_frequency=low_frequency,
|
|
|
|
high_frequency=high_frequency,
|
|
|
|
fs=fs,
|
|
|
|
)
|
|
|
|
|
|
|
|
index_full_dataset: torch.Tensor = torch.arange(
|
|
|
|
0, data.shape[1], device=device, dtype=torch.int64
|
|
|
|
)
|
|
|
|
|
|
|
|
for chunk in chunk_iterator(index_full_dataset, filtfilt_chuck_size):
|
|
|
|
temp_filtfilt = filtfilt(
|
|
|
|
data[:, chunk, :],
|
|
|
|
butter_a=butter_a,
|
|
|
|
butter_b=butter_b,
|
|
|
|
)
|
|
|
|
data[:, chunk, :] = temp_filtfilt
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def temporal_filter(
|
|
|
|
data: torch.Tensor,
|
|
|
|
device: torch.device,
|
|
|
|
orig_freq: int = 30,
|
|
|
|
new_freq: int = 3,
|
|
|
|
filtfilt_chuck_size: int = 10,
|
|
|
|
bp_low_frequency: float = 0.1,
|
|
|
|
bp_high_frequency: float = 1.0,
|
|
|
|
) -> torch.Tensor:
|
|
|
|
data = ta.functional.resample(
|
|
|
|
data.movedim(0, -1), orig_freq=orig_freq, new_freq=new_freq
|
|
|
|
).movedim(-1, 0)
|
|
|
|
|
2023-07-13 11:05:07 +02:00
|
|
|
data = bandpass(
|
2023-07-12 14:02:35 +02:00
|
|
|
data,
|
|
|
|
device=device,
|
|
|
|
low_frequency=bp_low_frequency,
|
|
|
|
high_frequency=bp_high_frequency,
|
|
|
|
fs=float(new_freq),
|
|
|
|
filtfilt_chuck_size=filtfilt_chuck_size,
|
|
|
|
)
|
|
|
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def svd_denoise(data: torch.Tensor, window_size: int) -> torch.Tensor:
|
|
|
|
data_out = torch.zeros_like(data)
|
|
|
|
|
|
|
|
for x in trange(0, data.shape[1]):
|
|
|
|
for y in range(0, data.shape[2]):
|
|
|
|
if (
|
|
|
|
((x - window_size) > 0)
|
|
|
|
and ((y - window_size) > 0)
|
|
|
|
and ((x + window_size) <= data.shape[1])
|
|
|
|
and ((y + window_size) <= data.shape[2])
|
|
|
|
):
|
|
|
|
data_sel: torch.Tensor = data[
|
|
|
|
:,
|
|
|
|
x - window_size : x + window_size + 1,
|
|
|
|
y - window_size : y + window_size + 1,
|
|
|
|
]
|
|
|
|
|
|
|
|
whiten_mean, whiten_k, eigenvalues = calculate_svd(data_sel.clone())
|
|
|
|
to_remove_data = to_remove(data_sel, whiten_k, whiten_mean)
|
|
|
|
data_out[:, x, y] = to_remove_data[:, window_size, window_size]
|
|
|
|
return data_out
|
2023-07-13 11:05:07 +02:00
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
|
def calculate_translation(
|
|
|
|
input: torch.Tensor,
|
|
|
|
reference_image: torch.Tensor,
|
|
|
|
image_alignment,
|
|
|
|
start_position_coefficients: int = 0,
|
|
|
|
batch_size: int = 100,
|
|
|
|
) -> torch.Tensor:
|
|
|
|
tvec = torch.zeros((input.shape[0], 2))
|
|
|
|
|
|
|
|
data_loader = torch.utils.data.DataLoader(
|
|
|
|
torch.utils.data.TensorDataset(input[start_position_coefficients:, ...]),
|
|
|
|
batch_size=batch_size,
|
|
|
|
shuffle=False,
|
|
|
|
)
|
|
|
|
start_position: int = 0
|
|
|
|
for input_batch in data_loader:
|
|
|
|
assert len(input_batch) == 1
|
|
|
|
|
|
|
|
end_position = start_position + input_batch[0].shape[0]
|
|
|
|
|
|
|
|
tvec_temp = image_alignment.dry_run_translation(
|
|
|
|
input=input_batch[0],
|
|
|
|
new_reference_image=reference_image,
|
|
|
|
)
|
|
|
|
|
|
|
|
assert tvec_temp is not None
|
|
|
|
|
|
|
|
tvec[start_position:end_position, :] = tvec_temp
|
|
|
|
|
|
|
|
start_position += input_batch[0].shape[0]
|
|
|
|
|
|
|
|
tvec = torch.round(tvec)
|
|
|
|
return tvec
|