Add files via upload

This commit is contained in:
David Rotermund 2023-07-14 22:33:18 +02:00 committed by GitHub
parent eedae1ae44
commit d6e2c7432b
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 115 additions and 50 deletions

View file

@ -54,10 +54,7 @@ class Anime:
if mask_np is not None: if mask_np is not None:
image[mask_np] = float("NaN") image[mask_np] = float("NaN")
image_handle = plt.imshow( image_handle = plt.imshow(
image, image, cmap=cmap, vmin=vmin, vmax=vmax, interpolation="nearest"
cmap=cmap,
vmin=vmin,
vmax=vmax,
) )
if colorbar: if colorbar:

View file

@ -3,6 +3,7 @@ import torch
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import skimage import skimage
filename: str = "example_data_crop" filename: str = "example_data_crop"
threshold: float = 0.8 threshold: float = 0.8
tolerance: float | None = None tolerance: float | None = None
@ -18,15 +19,22 @@ data = torch.tensor(input, device=torch_device)
del input del input
print("loading done") print("loading done")
data = data.nan_to_num(nan=0.0) data = data.nan_to_num(nan=0.0)
data -= data.mean(dim=0, keepdim=True) data -= data.mean(dim=0, keepdim=True)
# master_image = data.std(dim=0).nan_to_num(nan=0.0).clone()
data /= data.std(dim=0, keepdim=True) data /= data.std(dim=0, keepdim=True)
master_image = (data.max(dim=0)[0] - data.min(dim=0)[0]).nan_to_num(nan=0.0).clone() master_image = (data.max(dim=0)[0] - data.min(dim=0)[0]).nan_to_num(nan=0.0).clone()
temp_image = master_image.clone() temp_image = master_image.clone()
master_mask = torch.ones_like(temp_image) master_mask = torch.ones_like(temp_image)
stored_contours: list = [] stored_contours: list = []
perimenter: list = []
area: list = []
counter: int = 0 counter: int = 0
contours_found: int = 0 contours_found: int = 0
while int(master_mask.sum()) > 0: while int(master_mask.sum()) > 0:
@ -74,10 +82,13 @@ while int(master_mask.sum()) > 0:
# check if this is the contour in which the original point was # check if this is the contour in which the original point was
if mask[x, y]: if mask[x, y]:
found_something = True found_something = True
mask_sum = mask.sum()
if mask.sum() > minimum_area: if mask_sum > minimum_area:
perimenter.append(skimage.measure.perimeter(mask))
area.append(mask_sum)
stored_contours.append(coords) stored_contours.append(coords)
contours_found += 1 contours_found += 1
idx_set_mask = torch.where(torch.tensor(mask, device=torch_device) > 0) idx_set_mask = torch.where(torch.tensor(mask, device=torch_device) > 0)
master_mask[idx_set_mask] = 0.0 master_mask[idx_set_mask] = 0.0
@ -87,6 +98,14 @@ while int(master_mask.sum()) > 0:
master_mask[x, y] = 0.0 master_mask[x, y] = 0.0
print("-==- DONE -==-") print("-==- DONE -==-")
np.save("cells.npy", np.array(stored_contours, dtype=object)) np.save("cells.npy", np.array(stored_contours, dtype=object))
np.save("perimenter.npy", np.array(perimenter, dtype=object))
np.save("area.npy", np.array(area, dtype=object))
print()
for i in range(0, len(stored_contours)):
print(
f"ID:{i} area:{area[i]:.3e} perimenter:{perimenter[i]:.3e} ration:{area[i] / perimenter[i]:.3e}"
)
plt.imshow(master_image.cpu(), cmap="hot") plt.imshow(master_image.cpu(), cmap="hot")
for i in range(0, len(stored_contours)): for i in range(0, len(stored_contours)):

View file

@ -6,6 +6,9 @@ from scipy.stats import skew
filename: str = "example_data_crop" filename: str = "example_data_crop"
use_svd: bool = True use_svd: bool = True
show_movie: bool = True
from Anime import Anime
torch_device: torch.device = torch.device( torch_device: torch.device = torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu" "cuda:0" if torch.cuda.is_available() else "cpu"
@ -64,6 +67,26 @@ for id in range(0, stored_contours.shape[0]):
) / mask.sum() ) / mask.sum()
to_plot[:, id] = ts to_plot[:, id] = ts
with torch.no_grad():
if show_movie:
print("Calculate movie")
# Clean tensor
data *= 0.0
for id in range(0, stored_contours.shape[0]):
mask = torch.tensor(
skimage.draw.polygon2mask(
(int(data.shape[1]), int(data.shape[2])), stored_contours[id]
),
device=torch_device,
dtype=torch.float32,
)
# * 1.0 - mask: otherwise the overlapping outlines look bad
# Yes... reshape and indices would be faster...
data *= 1.0 - mask.unsqueeze(0)
data += mask.unsqueeze(0) * to_plot[:, id].unsqueeze(1).unsqueeze(2)
ani = Anime()
ani.show(data)
skew_value = skew(to_plot.cpu().numpy(), axis=0) skew_value = skew(to_plot.cpu().numpy(), axis=0)
skew_idx = np.flip(skew_value.argsort()) skew_idx = np.flip(skew_value.argsort())

View file

@ -3,15 +3,16 @@ import torch
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import skimage import skimage
from scipy.stats import skew from scipy.stats import skew
from svd import calculate_svd, to_remove, calculate_translation from svd import to_remove
import torchvision as tv import torchvision as tv
from ImageAlignment import ImageAlignment from ImageAlignment import ImageAlignment
# from Anime import Anime from Anime import Anime
filename: str = "example_data_crop" filename: str = "example_data_crop"
use_svd: bool = True use_svd: bool = True
show_movie: bool = True
torch_device: torch.device = torch.device( torch_device: torch.device = torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu" "cuda:0" if torch.cuda.is_available() else "cpu"
@ -20,43 +21,25 @@ torch_device: torch.device = torch.device(
with torch.no_grad(): with torch.no_grad():
print("Load data") print("Load data")
input = np.load(filename + str(".npy")) # str("_decorrelated.npy")) input = np.load(filename + str(".npy")) # str("_decorrelated.npy"))
data = torch.tensor(input, device=torch_device)
# del input # del input
print("loading done") print("loading done")
fill_value: float = 0.0 stored_contours = np.load("cells.npy", allow_pickle=True)
kernel_size_pooling = int(np.load("kernel_size_pooling.npy"))
print("Movement compensation [BROKEN!!!!]") fill_value = float(np.load("fill_value.npy"))
print("During development, information about what could move was missing.")
print("Thus the preprocessing before shift determination may not work.")
data -= data.min(dim=0)[0]
data /= data.std(dim=0, keepdim=True) + 1e-20
image_alignment = ImageAlignment(default_dtype=torch.float32, device=torch_device) image_alignment = ImageAlignment(default_dtype=torch.float32, device=torch_device)
tvec = calculate_translation( tvec = torch.tensor(np.load(filename + "_tvec.npy"), device=torch_device)
input=data,
reference_image=data[0, ...].clone(), np_svd_data = np.load(
image_alignment=image_alignment, filename + "_svd.npz",
) )
tvec_media = tvec.median(dim=0)[0] whiten_mean = torch.tensor(np_svd_data["whiten_mean"], device=torch_device)
print(f"Median of movement: {tvec_media[0]}, {tvec_media[1]}") whiten_k = torch.tensor(np_svd_data["whiten_k"], device=torch_device)
eigenvalues = torch.tensor(np_svd_data["eigenvalues"], device=torch_device)
del np_svd_data
data = torch.tensor(input, device=torch_device)
data -= data.min(dim=0, keepdim=True)[0]
for id in range(0, data.shape[0]):
data[id, ...] = tv.transforms.functional.affine(
img=data[id, ...].unsqueeze(0),
angle=0,
translate=[tvec[id, 1], tvec[id, 0]],
scale=1.0,
shear=0,
fill=fill_value,
).squeeze(0)
print("SVD")
whiten_mean, whiten_k, eigenvalues = calculate_svd(data)
# ----
data = torch.tensor(input, device=torch_device) data = torch.tensor(input, device=torch_device)
for id in range(0, data.shape[0]): for id in range(0, data.shape[0]):
data[id, ...] = tv.transforms.functional.affine( data[id, ...] = tv.transforms.functional.affine(
@ -68,12 +51,19 @@ with torch.no_grad():
fill=fill_value, fill=fill_value,
).squeeze(0) ).squeeze(0)
data -= data.min(dim=0, keepdim=True)[0] data -= data.min(dim=0, keepdim=True)[0]
to_remove_data = to_remove(data, whiten_k, whiten_mean) to_remove_data = to_remove(data, whiten_k, whiten_mean)
data -= to_remove_data data -= to_remove_data
del to_remove_data del to_remove_data
stored_contours = np.load("cells.npy", allow_pickle=True) print("Pooling")
# Warning: The contour masks have the same size as the binned data!!!
avage_pooling = torch.nn.AvgPool2d(
kernel_size=(kernel_size_pooling, kernel_size_pooling),
stride=(kernel_size_pooling, kernel_size_pooling),
)
data = avage_pooling(data)
if use_svd: if use_svd:
data_flat = torch.flatten( data_flat = torch.flatten(
@ -125,6 +115,26 @@ with torch.no_grad():
) / mask.sum() ) / mask.sum()
to_plot[:, id] = ts to_plot[:, id] = ts
if show_movie:
print("Calculate movie")
# Clean tensor
data *= 0.0
for id in range(0, stored_contours.shape[0]):
mask = torch.tensor(
skimage.draw.polygon2mask(
(int(data.shape[1]), int(data.shape[2])), stored_contours[id]
),
device=torch_device,
dtype=torch.float32,
)
# * 1.0 - mask: otherwise the overlapping outlines look bad
# Yes... reshape and indices would be faster...
data *= 1.0 - mask.unsqueeze(0)
data += mask.unsqueeze(0) * to_plot[:, id].unsqueeze(1).unsqueeze(2)
ani = Anime()
ani.show(data)
exit()
skew_value = skew(to_plot.cpu().numpy(), axis=0) skew_value = skew(to_plot.cpu().numpy(), axis=0)
skew_idx = np.flip(skew_value.argsort()) skew_idx = np.flip(skew_value.argsort())

View file

@ -4,6 +4,7 @@ import os
import torchvision as tv import torchvision as tv
from svd import ( from svd import (
calculate_svd, calculate_svd,
to_remove, to_remove,
@ -25,31 +26,33 @@ if __name__ == "__main__":
filtfilt_chuck_size: int = 10 filtfilt_chuck_size: int = 10
bp_low_frequency: float = 0.1 bp_low_frequency: float = 0.1
bp_high_frequency: float = 1.0 bp_high_frequency: float = 1.0
convert_overwrite: bool | None = None
fill_value: float = 0.0 fill_value: float = 0.0
convert_overwrite: bool | None = None
torch_device: torch.device = torch.device( torch_device: torch.device = torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu" "cuda:0" if torch.cuda.is_available() else "cpu"
) )
np.save("kernel_size_pooling.npy", np.array(kernel_size_pooling))
np.save("fill_value.npy", np.array(fill_value))
if ( if (
(convert_overwrite is None) (convert_overwrite is None) and (os.path.isfile(filename + ".npy") is False)
and (os.path.isfile("example_data_crop" + ".npy") is False)
) or (convert_overwrite): ) or (convert_overwrite):
print("Convert AVI file to npy file.") print("Convert AVI file to npy file.")
convert_avi_to_npy(filename) input = convert_avi_to_npy(filename)
print("--==-- DONE --==--") print("--==-- DONE --==--")
else:
with torch.no_grad():
print("Load data") print("Load data")
input = np.load(filename + str(".npy")) input = np.load(filename + str(".npy"))
with torch.no_grad():
data = torch.tensor(input, device=torch_device) data = torch.tensor(input, device=torch_device)
print("Movement compensation [BROKEN!!!!]") print("Movement compensation [BROKEN!!!!]")
print("During development, information about what could move was missing.") print("During development, information about what could move was missing.")
print("Thus the preprocessing before shift determination may not work.") print("Thus the preprocessing before shift determination may not work.")
# TODO:
data -= data.min(dim=0)[0] data -= data.min(dim=0)[0]
data /= data.std(dim=0, keepdim=True) + 1e-20 data /= data.std(dim=0, keepdim=True) + 1e-20
@ -62,9 +65,12 @@ if __name__ == "__main__":
reference_image=data[0, ...].clone(), reference_image=data[0, ...].clone(),
image_alignment=image_alignment, image_alignment=image_alignment,
) )
np.save(filename + "_tvec.npy", tvec.cpu().numpy())
tvec_media = tvec.median(dim=0)[0] tvec_media = tvec.median(dim=0)[0]
print(f"Median of movement: {tvec_media[0]}, {tvec_media[1]}") print(f"Median of movement: {tvec_media[0]}, {tvec_media[1]}")
del data
data = torch.tensor(input, device=torch_device) data = torch.tensor(input, device=torch_device)
for id in range(0, data.shape[0]): for id in range(0, data.shape[0]):
@ -76,13 +82,21 @@ if __name__ == "__main__":
shear=0, shear=0,
fill=fill_value, fill=fill_value,
).squeeze(0) ).squeeze(0)
data -= data.min(dim=0)[0]
print("SVD") print("SVD")
whiten_mean, whiten_k, eigenvalues = calculate_svd(data) whiten_mean, whiten_k, eigenvalues = calculate_svd(data)
print("Calculate to_remove") np.savez(
data = torch.tensor(input, device=torch_device) filename + "_svd.npz",
whiten_mean=whiten_mean.cpu().numpy(),
whiten_k=whiten_k.cpu().numpy(),
eigenvalues=eigenvalues.cpu().numpy(),
)
print("Calculate to_remove")
del data
data = torch.tensor(input, device=torch_device)
for id in range(0, data.shape[0]): for id in range(0, data.shape[0]):
data[id, ...] = tv.transforms.functional.affine( data[id, ...] = tv.transforms.functional.affine(
img=data[id, ...].unsqueeze(0), img=data[id, ...].unsqueeze(0),
@ -92,6 +106,7 @@ if __name__ == "__main__":
shear=0, shear=0,
fill=fill_value, fill=fill_value,
).squeeze(0) ).squeeze(0)
data -= data.min(dim=0)[0]
to_remove_data = to_remove(data, whiten_k, whiten_mean) to_remove_data = to_remove(data, whiten_k, whiten_mean)

5
svd.py
View file

@ -5,7 +5,7 @@ import numpy as np
from tqdm import trange from tqdm import trange
def convert_avi_to_npy(filename: str) -> None: def convert_avi_to_npy(filename: str) -> np.ndarray:
capture_from_file = cv2.VideoCapture(filename + str(".avi")) capture_from_file = cv2.VideoCapture(filename + str(".avi"))
avi_length = int(capture_from_file.get(cv2.CAP_PROP_FRAME_COUNT)) avi_length = int(capture_from_file.get(cv2.CAP_PROP_FRAME_COUNT))
@ -26,12 +26,13 @@ def convert_avi_to_npy(filename: str) -> None:
assert data is not None assert data is not None
np.save(filename + str(".npy"), data) np.save(filename + str(".npy"), data)
return data
@torch.no_grad() @torch.no_grad()
def to_remove( def to_remove(
data: torch.Tensor, whiten_k: torch.Tensor, whiten_mean: torch.Tensor data: torch.Tensor, whiten_k: torch.Tensor, whiten_mean: torch.Tensor
) -> torch.Tensor: ) -> torch.Tensor:
whiten_mean = whiten_mean
whiten_k = whiten_k[:, :, 0] whiten_k = whiten_k[:, :, 0]
data = (data - whiten_mean.unsqueeze(0)) * whiten_k.unsqueeze(0) data = (data - whiten_mean.unsqueeze(0)) * whiten_k.unsqueeze(0)