import torch import numpy as np from svd import calculate_svd, to_remove, temporal_filter, svd_denoise if __name__ == "__main__": filename: str = "example_data_crop" window_size: int = 2 kernel_size_pooling: int = 2 orig_freq: int = 30 new_freq: int = 3 filtfilt_chuck_size: int = 10 bp_low_frequency: float = 0.1 bp_high_frequency: float = 1.0 torch_device: torch.device = torch.device( "cuda:0" if torch.cuda.is_available() else "cpu" ) print("Load data") input = np.load(filename + str(".npy")) data = torch.tensor(input, device=torch_device) print("Movement compensation [MISSING!!!!]") print("(include ImageAlignment.py into processing chain)") print("SVD") whiten_mean, whiten_k, eigenvalues = calculate_svd(data) print("Calculate to_remove") data = torch.tensor(input, device=torch_device) to_remove_data = to_remove(data, whiten_k, whiten_mean) data -= to_remove_data del to_remove_data print("apply temporal filter") data = temporal_filter( data, device=torch_device, orig_freq=orig_freq, new_freq=new_freq, filtfilt_chuck_size=filtfilt_chuck_size, bp_low_frequency=bp_low_frequency, bp_high_frequency=bp_high_frequency, ) print("SVD Denosing") data_out = svd_denoise(data, window_size=window_size) print("Pooling") avage_pooling = torch.nn.AvgPool2d( kernel_size=(kernel_size_pooling, kernel_size_pooling), stride=(kernel_size_pooling, kernel_size_pooling), ) data_out = avage_pooling(data_out) np.save(filename + str("_decorrelated.npy"), data_out.cpu())