import numpy as np import torch import matplotlib.pyplot as plt import skimage from scipy.stats import skew filename: str = "example_data_crop" use_svd: bool = True show_movie: bool = True from Anime import Anime torch_device: torch.device = torch.device( "cuda:0" if torch.cuda.is_available() else "cpu" ) print("Load data") input = np.load(filename + str("_decorrelated.npy")) data = torch.tensor(input, device=torch_device) del input print("loading done") stored_contours = np.load("cells.npy", allow_pickle=True) if use_svd: data_flat = torch.flatten( data.nan_to_num(nan=0.0).movedim(0, -1), start_dim=0, end_dim=1, ) to_plot = torch.zeros( (int(data.shape[0]), int(stored_contours.shape[0])), device=torch_device, dtype=torch.float32, ) for id in range(0, stored_contours.shape[0]): mask = torch.tensor( skimage.draw.polygon2mask( (int(data.shape[1]), int(data.shape[2])), stored_contours[id] ), device=torch_device, dtype=torch.float32, ) if use_svd: mask_flat = torch.flatten( mask.unsqueeze(0).nan_to_num(nan=0.0).movedim(0, -1), start_dim=0, end_dim=1, ) idx = torch.where(mask_flat > 0)[0] temp = data_flat[idx, :].clone() whiten_mean = torch.mean(temp, dim=-1) temp -= whiten_mean.unsqueeze(-1) svd_u, svd_s, _ = torch.svd_lowrank(temp, q=6) whiten_k = ( torch.sign(svd_u[0, :]).unsqueeze(0) * svd_u / (svd_s.unsqueeze(0) + 1e-20) )[:, 0] temp = temp * whiten_k.unsqueeze(-1) data_svd = temp.movedim(-1, 0).sum(dim=-1) to_plot[:, id] = data_svd else: ts = (data * mask.unsqueeze(0)).nan_to_num(nan=0.0).sum( dim=(-2, -1) ) / mask.sum() to_plot[:, id] = ts with torch.no_grad(): if show_movie: print("Calculate movie") # Clean tensor data *= 0.0 for id in range(0, stored_contours.shape[0]): mask = torch.tensor( skimage.draw.polygon2mask( (int(data.shape[1]), int(data.shape[2])), stored_contours[id] ), device=torch_device, dtype=torch.float32, ) # * 1.0 - mask: otherwise the overlapping outlines look bad # Yes... reshape and indices would be faster... data *= 1.0 - mask.unsqueeze(0) data += mask.unsqueeze(0) * to_plot[:, id].unsqueeze(1).unsqueeze(2) ani = Anime() ani.show(data) skew_value = skew(to_plot.cpu().numpy(), axis=0) skew_idx = np.flip(skew_value.argsort()) skew_value = skew_value[skew_idx] to_plot_np = to_plot.cpu().numpy() to_plot_np = to_plot_np[:, skew_idx] plt.plot(to_plot[:, 0:5].cpu()) plt.show() block_size: int = 8 # print(to_plot.shape[1] // block_size) for i in range(0, 4 * 8): plt.subplot(8, 4, i + 1) plt.plot(to_plot[:, i * block_size : (i + 1) * block_size].cpu()) plt.show()