ca_imaging_funhouse/inspection.py
2023-07-13 02:11:36 +02:00

83 lines
2.2 KiB
Python

import numpy as np
import torch
import matplotlib.pyplot as plt
import skimage
from scipy.stats import skew
filename: str = "example_data_crop"
use_svd: bool = True
torch_device: torch.device = torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu"
)
print("Load data")
input = np.load(filename + str("_decorrelated.npy"))
data = torch.tensor(input, device=torch_device)
del input
print("loading done")
stored_contours = np.load("cells.npy", allow_pickle=True)
if use_svd:
data_flat = torch.flatten(
data.nan_to_num(nan=0.0).movedim(0, -1),
start_dim=0,
end_dim=1,
)
to_plot = torch.zeros(
(int(data.shape[0]), int(stored_contours.shape[0])),
device=torch_device,
dtype=torch.float32,
)
for id in range(0, stored_contours.shape[0]):
mask = torch.tensor(
skimage.draw.polygon2mask(
(int(data.shape[1]), int(data.shape[2])), stored_contours[id]
),
device=torch_device,
dtype=torch.float32,
)
if use_svd:
mask_flat = torch.flatten(
mask.unsqueeze(0).nan_to_num(nan=0.0).movedim(0, -1),
start_dim=0,
end_dim=1,
)
idx = torch.where(mask_flat > 0)[0]
temp = data_flat[idx, :].clone()
whiten_mean = torch.mean(temp, dim=-1)
temp -= whiten_mean.unsqueeze(-1)
svd_u, svd_s, _ = torch.svd_lowrank(temp, q=6)
whiten_k = (
torch.sign(svd_u[0, :]).unsqueeze(0) * svd_u / (svd_s.unsqueeze(0) + 1e-20)
)[:, 0]
temp = temp * whiten_k.unsqueeze(-1)
data_svd = temp.movedim(-1, 0).sum(dim=-1)
to_plot[:, id] = data_svd
else:
ts = (data * mask.unsqueeze(0)).nan_to_num(nan=0.0).sum(
dim=(-2, -1)
) / mask.sum()
to_plot[:, id] = ts
skew_value = skew(to_plot.cpu().numpy(), axis=0)
skew_idx = np.flip(skew_value.argsort())
skew_value = skew_value[skew_idx]
to_plot_np = to_plot.cpu().numpy()
to_plot_np = to_plot_np[:, skew_idx]
plt.plot(to_plot[:, 0:5].cpu())
plt.show()
block_size: int = 8
# print(to_plot.shape[1] // block_size)
for i in range(0, 4 * 8):
plt.subplot(8, 4, i + 1)
plt.plot(to_plot[:, i * block_size : (i + 1) * block_size].cpu())
plt.show()