gevi/olivia_data_plotter.py

215 lines
6.4 KiB
Python
Raw Normal View History

2024-02-29 01:54:55 +01:00
import numpy as np
import matplotlib.pyplot as plt
import os
from functions.create_logger import create_logger
from functions.load_config import load_config
from functions.get_trials import get_trials
import h5py # type: ignore
2024-03-01 15:54:57 +01:00
import torch
import scipy # type: ignore
2024-03-01 01:36:18 +01:00
import argh
2024-03-01 15:54:57 +01:00
from functions.data_raw_loader import data_raw_loader
2024-03-01 01:36:18 +01:00
2024-03-01 15:54:57 +01:00
def main(
*,
experiment_id: int = 4,
config_filename: str = "config.json",
highpass_freqency: float = 0.5,
lowpass_freqency: float = 10.0,
butter_worth_order: int = 4,
log_stage_name: str = "olivia",
plot_show: bool = True,
) -> None:
2024-03-01 01:36:18 +01:00
mylogger = create_logger(
save_logging_messages=True,
display_logging_messages=True,
2024-03-01 15:54:57 +01:00
log_stage_name=log_stage_name,
2024-03-01 01:36:18 +01:00
)
config = load_config(mylogger=mylogger, filename=config_filename)
roi_path: str = config["ref_image_path"]
control_file_handle = h5py.File(os.path.join(roi_path, "ROI_control.mat"), "r")
control_roi = (np.array(control_file_handle["roi"]).T) > 0
control_file_handle.close()
control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1]))
s_darken_file_handle = h5py.File(os.path.join(roi_path, "ROI_sDarken.mat"), "r")
s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0
s_darken_file_handle.close()
s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1]))
raw_data_path: str = os.path.join(
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
data_path: str = str(config["export_path"])
trails = get_trials(path=raw_data_path, experiment_id=experiment_id)
for i in range(0, trails.shape[0]):
trial_id = int(trails[i])
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
mylogger.info(f"Loading files for {experiment_name}")
data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz"))
if i == 0:
ratio_sequence = data["ratio_sequence"]
else:
ratio_sequence += data["ratio_sequence"]
ratio_sequence /= float(trails.shape[0])
ratio_sequence = ratio_sequence.reshape(
(ratio_sequence.shape[0] * ratio_sequence.shape[1], ratio_sequence.shape[2])
)
control = ratio_sequence[control_roi, :].mean(axis=0)
s_darken = ratio_sequence[s_darken_roi, :].mean(axis=0)
2024-03-01 15:54:57 +01:00
max_value = max(
[
control[config["skip_frames_in_the_beginning"] :].max(),
s_darken[config["skip_frames_in_the_beginning"] :].max(),
]
)
min_value = min(
[
control[config["skip_frames_in_the_beginning"] :].min(),
s_darken[config["skip_frames_in_the_beginning"] :].min(),
]
)
first_trial_id: int = int(get_trials(raw_data_path, experiment_id).min())
(
meta_channels,
meta_mouse_markings,
meta_recording_date,
meta_stimulation_times,
meta_experiment_names,
meta_trial_recording_duration,
meta_frame_time,
meta_mouse,
data,
) = data_raw_loader(
raw_data_path=raw_data_path,
mylogger=mylogger,
experiment_id=experiment_id,
trial_id=first_trial_id,
device=torch.device("cpu"),
force_to_cpu_memory=True,
config=config,
)
idx = config["required_order"].index("acceptor")
acceptor = data[..., idx].mean(axis=0).mean(axis=0)
acceptor -= acceptor[config["skip_frames_in_the_beginning"] :].min()
acceptor /= acceptor[config["skip_frames_in_the_beginning"] :].max()
acceptor_f0 = acceptor.clone()
acceptor_f0 *= max_value - min_value
acceptor_f0 += min_value
b, a = scipy.signal.butter(
butter_worth_order,
lowpass_freqency,
btype="low",
output="ba",
fs=1.0 / meta_frame_time,
)
control_f1 = scipy.signal.filtfilt(b, a, control)
s_darken_f1 = scipy.signal.filtfilt(b, a, s_darken)
b, a = scipy.signal.butter(
butter_worth_order,
highpass_freqency,
btype="high",
output="ba",
fs=1.0 / meta_frame_time,
)
control_f1 = scipy.signal.filtfilt(b, a, control_f1)
s_darken_f1 = scipy.signal.filtfilt(b, a, s_darken_f1)
max_value = max(
[
control_f1[config["skip_frames_in_the_beginning"] :].max(),
s_darken_f1[config["skip_frames_in_the_beginning"] :].max(),
]
)
min_value = min(
[
control_f1[config["skip_frames_in_the_beginning"] :].min(),
s_darken_f1[config["skip_frames_in_the_beginning"] :].min(),
]
)
acceptor_f1 = acceptor.clone()
acceptor_f1 *= max_value - min_value
acceptor_f1 += min_value
2024-03-01 01:36:18 +01:00
t = np.arange(0, control.shape[0]) / 100.0
2024-03-01 15:54:57 +01:00
plt.figure(figsize=(10, 10))
plt.subplot(2, 1, 1)
plt.plot(
t[config["skip_frames_in_the_beginning"] :],
acceptor_f0[config["skip_frames_in_the_beginning"] :],
color=(0.5, 0.5, 0.5),
label="light (acceptor)",
)
plt.plot(
t[config["skip_frames_in_the_beginning"] :],
control[config["skip_frames_in_the_beginning"] :],
label="control",
)
plt.plot(
t[config["skip_frames_in_the_beginning"] :],
s_darken[config["skip_frames_in_the_beginning"] :],
label="sDarken",
)
plt.title(
f"Experiment {experiment_id} {config['recoding_data']} {config['mouse_identifier']}"
)
plt.legend()
plt.xlabel("Time [sec]")
plt.subplot(2, 1, 2)
plt.plot(
t[config["skip_frames_in_the_beginning"] :],
acceptor_f1[config["skip_frames_in_the_beginning"] :],
color=(0.5, 0.5, 0.5),
label="light (acceptor)",
)
plt.plot(
t[config["skip_frames_in_the_beginning"] :],
control_f1[config["skip_frames_in_the_beginning"] :],
label=f"control ({highpass_freqency}Hz - {lowpass_freqency}Hz)",
)
plt.plot(
t[config["skip_frames_in_the_beginning"] :],
s_darken_f1[config["skip_frames_in_the_beginning"] :],
label=f"sDarken ({highpass_freqency}Hz - {lowpass_freqency}Hz)",
)
2024-03-01 01:36:18 +01:00
plt.legend()
plt.xlabel("Time [sec]")
2024-03-01 15:54:57 +01:00
plt.savefig(
f"olivia_both_Exp{experiment_id}_{config['recoding_data']}_{config['mouse_identifier']}.png",
dpi=300,
)
if plot_show:
plt.show()
2024-03-01 01:36:18 +01:00
if __name__ == "__main__":
argh.dispatch_command(main)