2024-02-04 05:23:53 +01:00
|
|
|
import torch
|
|
|
|
import torchvision as tv # type: ignore
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import scipy.io as sio # type: ignore
|
2024-02-14 22:44:15 +01:00
|
|
|
import json
|
2024-02-04 05:23:53 +01:00
|
|
|
|
|
|
|
from functions.align_cameras import align_cameras
|
|
|
|
|
|
|
|
if torch.cuda.is_available():
|
|
|
|
device_name: str = "cuda:0"
|
|
|
|
else:
|
|
|
|
device_name = "cpu"
|
|
|
|
print(f"Using device: {device_name}")
|
|
|
|
device: torch.device = torch.device(device_name)
|
|
|
|
dtype: torch.dtype = torch.float32
|
|
|
|
|
|
|
|
filename_bin_mat: str = "bin_old/Exp001_Trial001_Part001.mat"
|
|
|
|
filename_bin_mat_fake: str = "Exp001_Trial001_Part001_fake.mat"
|
|
|
|
fill_value: float = 0.0
|
|
|
|
|
|
|
|
mat_data = torch.tensor(
|
|
|
|
sio.loadmat(filename_bin_mat)["nparray"].astype(dtype=np.float32),
|
|
|
|
dtype=dtype,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
|
|
|
|
angle_refref_target = torch.tensor(
|
|
|
|
[2],
|
|
|
|
dtype=dtype,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
|
|
|
|
tvec_refref_target = torch.tensor(
|
|
|
|
[10, 3],
|
|
|
|
dtype=dtype,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
t = (
|
|
|
|
torch.arange(
|
|
|
|
0,
|
|
|
|
mat_data.shape[-2],
|
|
|
|
dtype=dtype,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
- mat_data.shape[-2] // 2
|
|
|
|
) / float(mat_data.shape[-2] // 2)
|
|
|
|
|
|
|
|
f_a: float = 8
|
|
|
|
A_a: float = 2
|
|
|
|
a_target = A_a * torch.sin(2 * torch.pi * t * f_a)
|
|
|
|
|
|
|
|
f_x: float = 5
|
|
|
|
A_x: float = 10
|
|
|
|
x_target = A_x * torch.sin(2.0 * torch.pi * t * f_x)
|
|
|
|
|
|
|
|
f_y: float = 7
|
|
|
|
A_y: float = 7
|
|
|
|
y_target = A_y * torch.sin(2 * torch.pi * t * f_y)
|
|
|
|
|
|
|
|
master_images: torch.Tensor = mat_data[:, :, mat_data.shape[-2] // 2, 1]
|
|
|
|
|
|
|
|
master_images_2: torch.Tensor = master_images.unsqueeze(-1).tile(
|
|
|
|
(1, 1, mat_data.shape[-1])
|
|
|
|
)
|
|
|
|
|
|
|
|
# Rotate and move the whole timeseries of the acceptor and oxygenation
|
|
|
|
master_images_2[..., 0] = tv.transforms.functional.affine(
|
|
|
|
img=master_images_2[..., 0].unsqueeze(0),
|
|
|
|
angle=-float(angle_refref_target),
|
|
|
|
translate=[0, 0],
|
|
|
|
scale=1.0,
|
|
|
|
shear=0,
|
|
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
|
|
fill=fill_value,
|
|
|
|
).squeeze(0)
|
|
|
|
|
|
|
|
master_images_2[..., 0] = tv.transforms.functional.affine(
|
|
|
|
img=master_images_2[..., 0].unsqueeze(0),
|
|
|
|
angle=0,
|
|
|
|
translate=[tvec_refref_target[1], tvec_refref_target[0]],
|
|
|
|
scale=1.0,
|
|
|
|
shear=0,
|
|
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
|
|
fill=fill_value,
|
|
|
|
).squeeze(0)
|
|
|
|
|
|
|
|
master_images_2[..., 2] = tv.transforms.functional.affine(
|
|
|
|
img=master_images_2[..., 2].unsqueeze(0),
|
|
|
|
angle=-float(angle_refref_target),
|
|
|
|
translate=[0, 0],
|
|
|
|
scale=1.0,
|
|
|
|
shear=0,
|
|
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
|
|
fill=fill_value,
|
|
|
|
).squeeze(0)
|
|
|
|
|
|
|
|
master_images_2[..., 2] = tv.transforms.functional.affine(
|
|
|
|
img=master_images_2[..., 2].unsqueeze(0),
|
|
|
|
angle=0,
|
|
|
|
translate=[tvec_refref_target[1], tvec_refref_target[0]],
|
|
|
|
scale=1.0,
|
|
|
|
shear=0,
|
|
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
|
|
fill=fill_value,
|
|
|
|
).squeeze(0)
|
|
|
|
|
|
|
|
fake_data = master_images_2.unsqueeze(-2).tile((1, 1, mat_data.shape[-2], 1)).clone()
|
|
|
|
|
|
|
|
for t_id in range(0, fake_data.shape[-2]):
|
|
|
|
for c_id in range(0, fake_data.shape[-1]):
|
|
|
|
fake_data[..., t_id, c_id] = tv.transforms.functional.affine(
|
|
|
|
img=fake_data[..., t_id, c_id].unsqueeze(0),
|
|
|
|
angle=-float(a_target[t_id]),
|
|
|
|
translate=[0, 0],
|
|
|
|
scale=1.0,
|
|
|
|
shear=0,
|
|
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
|
|
fill=fill_value,
|
|
|
|
).squeeze(0)
|
|
|
|
|
|
|
|
fake_data = fake_data.clone()
|
|
|
|
|
|
|
|
for t_id in range(0, fake_data.shape[-2]):
|
|
|
|
for c_id in range(0, fake_data.shape[-1]):
|
|
|
|
fake_data[..., t_id, c_id] = tv.transforms.functional.affine(
|
|
|
|
img=fake_data[..., t_id, c_id].unsqueeze(0),
|
|
|
|
angle=0.0,
|
|
|
|
translate=[y_target[t_id], x_target[t_id]],
|
|
|
|
scale=1.0,
|
|
|
|
shear=0,
|
|
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
|
|
fill=fill_value,
|
|
|
|
).squeeze(0)
|
|
|
|
|
|
|
|
fake_data_np = fake_data.cpu().numpy()
|
|
|
|
mdic = {"nparray": fake_data_np}
|
|
|
|
sio.savemat(filename_bin_mat_fake, mdic)
|
|
|
|
|
|
|
|
# ----------------------------------------------------
|
|
|
|
|
|
|
|
batch_size: int = 200
|
|
|
|
filename_raw_json: str = "raw/Exp001_Trial001_Part001_meta.txt"
|
|
|
|
|
2024-02-14 22:44:15 +01:00
|
|
|
with open(filename_raw_json, "r") as file_handle:
|
|
|
|
metadata: dict = json.load(file_handle)
|
|
|
|
channels: list[str] = metadata["channelKey"]
|
|
|
|
|
|
|
|
|
|
|
|
data = torch.tensor(
|
|
|
|
sio.loadmat(filename_bin_mat_fake)["nparray"].astype(np.float32),
|
|
|
|
dtype=dtype,
|
|
|
|
device=device,
|
|
|
|
)
|
|
|
|
|
|
|
|
ref_image = data[:, :, data.shape[-2] // 2, :].clone()
|
|
|
|
|
2024-02-04 05:23:53 +01:00
|
|
|
(
|
|
|
|
acceptor,
|
|
|
|
donor,
|
|
|
|
oxygenation,
|
|
|
|
volume,
|
|
|
|
angle_donor_volume,
|
|
|
|
tvec_donor_volume,
|
|
|
|
angle_refref,
|
|
|
|
tvec_refref,
|
|
|
|
) = align_cameras(
|
2024-02-14 22:44:15 +01:00
|
|
|
channels=channels,
|
|
|
|
data=data,
|
|
|
|
ref_image=ref_image,
|
2024-02-04 05:23:53 +01:00
|
|
|
device=device,
|
|
|
|
dtype=dtype,
|
|
|
|
batch_size=batch_size,
|
|
|
|
fill_value=-1,
|
|
|
|
)
|
2024-02-14 22:44:15 +01:00
|
|
|
del data
|
|
|
|
|
2024-02-04 05:23:53 +01:00
|
|
|
|
|
|
|
print("References Acceptor <-> Donor:")
|
|
|
|
print("Rotation:")
|
|
|
|
print(f"target: {float(angle_refref_target):.3f}")
|
|
|
|
print(f"found: {-float(angle_refref):.3f}")
|
|
|
|
print("Translation")
|
|
|
|
print(f"target: {float(tvec_refref_target[0]):.3f}, {float(tvec_refref_target[1]):.3f}")
|
|
|
|
print(f"found: {-float(tvec_refref[0]):.3f}, {-float(tvec_refref[1]):.3f}")
|
|
|
|
|
|
|
|
plt.subplot(3, 1, 1)
|
|
|
|
plt.plot(-angle_donor_volume.cpu(), "g", label="angle found")
|
|
|
|
plt.plot(a_target.cpu(), "--k", label="angle target")
|
|
|
|
plt.legend()
|
|
|
|
|
|
|
|
plt.subplot(3, 1, 2)
|
|
|
|
plt.plot(-tvec_donor_volume[:, 0].cpu(), "g", label="x found")
|
|
|
|
plt.plot(x_target.cpu(), "k--", label="x target")
|
|
|
|
plt.legend()
|
|
|
|
|
|
|
|
plt.subplot(3, 1, 3)
|
|
|
|
plt.plot(-tvec_donor_volume[:, 1].cpu(), "g", label="y found")
|
|
|
|
plt.plot(y_target.cpu(), "k--", label="y target")
|
|
|
|
plt.legend()
|
|
|
|
|
|
|
|
plt.show()
|