94 lines
3 KiB
Python
94 lines
3 KiB
Python
|
import scipy.io as sio # type: ignore
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
import json
|
||
|
|
||
|
from functions.make_mask import make_mask
|
||
|
from functions.convert_camera_sequenc_to_list import convert_camera_sequenc_to_list
|
||
|
from functions.preprocess_camera_sequence import preprocess_camera_sequence
|
||
|
from functions.interpolate_along_time import interpolate_along_time
|
||
|
from functions.gauss_smear import gauss_smear
|
||
|
from functions.regression import regression
|
||
|
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def preprocessing(
|
||
|
filename_metadata: str,
|
||
|
filename_data: str,
|
||
|
filename_mask: str,
|
||
|
device: torch.device,
|
||
|
first_none_ramp_frame: int,
|
||
|
spatial_width: float,
|
||
|
temporal_width: float,
|
||
|
target_camera: list[str],
|
||
|
regressor_cameras: list[str],
|
||
|
dtype: torch.dtype = torch.float32,
|
||
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
|
||
|
data: torch.Tensor = torch.tensor(
|
||
|
sio.loadmat(filename_data)["data"].astype(np.float32),
|
||
|
device=device,
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
|
||
|
with open(filename_metadata, "r") as file_handle:
|
||
|
metadata: dict = json.load(file_handle)
|
||
|
cameras: list[str] = metadata["channelKey"]
|
||
|
|
||
|
required_order: list[str] = ["acceptor", "donor", "oxygenation", "volume"]
|
||
|
|
||
|
mask: torch.Tensor = make_mask(
|
||
|
filename_mask=filename_mask, data=data, device=device, dtype=dtype
|
||
|
)
|
||
|
|
||
|
camera_sequence: list[torch.Tensor] = convert_camera_sequenc_to_list(
|
||
|
data=data, required_order=required_order, cameras=cameras
|
||
|
)
|
||
|
|
||
|
for num_cams in range(len(camera_sequence)):
|
||
|
camera_sequence[num_cams], mask = preprocess_camera_sequence(
|
||
|
camera_sequence=camera_sequence[num_cams],
|
||
|
mask=mask,
|
||
|
first_none_ramp_frame=first_none_ramp_frame,
|
||
|
device=device,
|
||
|
dtype=dtype,
|
||
|
)
|
||
|
|
||
|
# Interpolate in-between images
|
||
|
interpolate_along_time(camera_sequence)
|
||
|
|
||
|
camera_sequence_filtered: list[torch.Tensor] = []
|
||
|
for id in range(0, len(camera_sequence)):
|
||
|
camera_sequence_filtered.append(camera_sequence[id].clone())
|
||
|
|
||
|
camera_sequence_filtered = gauss_smear(
|
||
|
camera_sequence_filtered,
|
||
|
mask.type(dtype=dtype),
|
||
|
spatial_width=spatial_width,
|
||
|
temporal_width=temporal_width,
|
||
|
)
|
||
|
|
||
|
regressor_camera_ids: list[int] = []
|
||
|
|
||
|
for cam in regressor_cameras:
|
||
|
regressor_camera_ids.append(cameras.index(cam))
|
||
|
|
||
|
results: list[torch.Tensor] = []
|
||
|
|
||
|
for channel_position in range(0, len(target_camera)):
|
||
|
print(f"channel position: {channel_position}")
|
||
|
target_camera_selected = target_camera[channel_position]
|
||
|
target_camera_id: int = cameras.index(target_camera_selected)
|
||
|
|
||
|
output = regression(
|
||
|
target_camera_id=target_camera_id,
|
||
|
regressor_camera_ids=regressor_camera_ids,
|
||
|
mask=mask,
|
||
|
camera_sequence=camera_sequence,
|
||
|
camera_sequence_filtered=camera_sequence_filtered,
|
||
|
first_none_ramp_frame=first_none_ramp_frame,
|
||
|
)
|
||
|
results.append(output)
|
||
|
|
||
|
return results[0], results[1], mask
|