gevi/functions/regression.py

118 lines
4 KiB
Python
Raw Normal View History

2024-02-28 16:14:50 +01:00
import torch
import logging
from functions.regression_internal import regression_internal
@torch.no_grad()
def regression(
mylogger: logging.Logger,
target_camera_id: int,
regressor_camera_ids: list[int],
mask: torch.Tensor,
data: torch.Tensor,
data_filtered: torch.Tensor,
first_none_ramp_frame: int,
) -> tuple[torch.Tensor, torch.Tensor]:
assert len(regressor_camera_ids) > 0
mylogger.info("Prepare the target signal - 1.0 (from data_filtered)")
target_signals_train: torch.Tensor = (
data_filtered[target_camera_id, ..., first_none_ramp_frame:].clone() - 1.0
)
target_signals_train[target_signals_train < -1] = 0.0
# Check if everything is happy
assert target_signals_train.ndim == 3
assert target_signals_train.ndim == data[target_camera_id, ...].ndim
assert target_signals_train.shape[0] == data[target_camera_id, ...].shape[0]
assert target_signals_train.shape[1] == data[target_camera_id, ...].shape[1]
assert (target_signals_train.shape[2] + first_none_ramp_frame) == data[
target_camera_id, ...
].shape[2]
mylogger.info("Prepare the regressor signals (linear plus from data_filtered)")
regressor_signals_train: torch.Tensor = torch.zeros(
(
data_filtered.shape[1],
data_filtered.shape[2],
data_filtered.shape[3],
len(regressor_camera_ids) + 1,
),
device=data_filtered.device,
dtype=data_filtered.dtype,
)
mylogger.info("Copy the regressor signals - 1.0")
for matrix_id, id in enumerate(regressor_camera_ids):
regressor_signals_train[..., matrix_id] = data_filtered[id, ...] - 1.0
regressor_signals_train[regressor_signals_train < -1] = 0.0
mylogger.info("Create the linear regressor")
trend = torch.arange(
0, regressor_signals_train.shape[-2], device=data_filtered.device
) / float(regressor_signals_train.shape[-2] - 1)
trend -= trend.mean()
trend = trend.unsqueeze(0).unsqueeze(0)
trend = trend.tile(
(regressor_signals_train.shape[0], regressor_signals_train.shape[1], 1)
)
regressor_signals_train[..., -1] = trend
regressor_signals_train = regressor_signals_train[:, :, first_none_ramp_frame:, :]
mylogger.info("Calculating the regression coefficients")
coefficients, intercept = regression_internal(
input_regressor=regressor_signals_train, input_target=target_signals_train
)
del regressor_signals_train
del target_signals_train
mylogger.info("Prepare the target signal - 1.0 (from data)")
target_signals_perform: torch.Tensor = data[target_camera_id, ...].clone() - 1.0
mylogger.info("Prepare the regressor signals (linear plus from data)")
regressor_signals_perform: torch.Tensor = torch.zeros(
(
data.shape[1],
data.shape[2],
data.shape[3],
len(regressor_camera_ids) + 1,
),
device=data.device,
dtype=data.dtype,
)
mylogger.info("Copy the regressor signals - 1.0 ")
for matrix_id, id in enumerate(regressor_camera_ids):
regressor_signals_perform[..., matrix_id] = data[id] - 1.0
mylogger.info("Create the linear regressor")
trend = torch.arange(
0, regressor_signals_perform.shape[-2], device=data[0].device
) / float(regressor_signals_perform.shape[-2] - 1)
trend -= trend.mean()
trend = trend.unsqueeze(0).unsqueeze(0)
trend = trend.tile(
(regressor_signals_perform.shape[0], regressor_signals_perform.shape[1], 1)
)
regressor_signals_perform[..., -1] = trend
mylogger.info("Remove regressors")
target_signals_perform -= (
regressor_signals_perform * coefficients.unsqueeze(-2)
).sum(dim=-1)
mylogger.info("Remove offset")
target_signals_perform -= intercept.unsqueeze(-1)
mylogger.info("Remove masked pixels")
target_signals_perform[mask, :] = 0.0
mylogger.info("Add an offset of 1.0")
target_signals_perform += 1.0
return target_signals_perform, coefficients