2024-02-29 02:14:02 +01:00
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import os
|
|
|
|
from functions.create_logger import create_logger
|
|
|
|
from functions.load_config import load_config
|
|
|
|
|
|
|
|
from functions.get_trials import get_trials
|
|
|
|
import h5py # type: ignore
|
|
|
|
import torch
|
2024-03-01 15:54:57 +01:00
|
|
|
import scipy # type: ignore
|
2024-02-29 02:14:02 +01:00
|
|
|
|
2024-03-01 01:36:18 +01:00
|
|
|
import argh
|
2024-03-01 15:54:57 +01:00
|
|
|
from functions.data_raw_loader import data_raw_loader
|
|
|
|
|
|
|
|
# def func(x, a, b, c, dt):
|
|
|
|
# return a * (x - dt) ** b + c
|
|
|
|
|
|
|
|
|
|
|
|
# def fit(
|
|
|
|
# ratio_sequence: np.ndarray,
|
|
|
|
# t: np.ndarray,
|
|
|
|
# config: dict,
|
|
|
|
# ) -> tuple[np.ndarray, np.ndarray]:
|
|
|
|
|
|
|
|
# data_min = ratio_sequence[config["skip_frames_in_the_beginning"] :].min()
|
|
|
|
# data_max = ratio_sequence[config["skip_frames_in_the_beginning"] :].max()
|
|
|
|
# b_min = 1.0
|
|
|
|
# b_max = 3.0
|
|
|
|
|
|
|
|
# temp_1 = max([abs(data_min), abs(data_max)])
|
|
|
|
# a_min = -temp_1 - 2 * abs(data_max - data_min)
|
|
|
|
# a_max = +temp_1 + 2 * abs(data_max - data_min)
|
|
|
|
|
|
|
|
# try:
|
|
|
|
# popt, _ = scipy.optimize.curve_fit(
|
|
|
|
# f=func,
|
|
|
|
# xdata=t[config["skip_frames_in_the_beginning"] :],
|
|
|
|
# ydata=np.nan_to_num(
|
|
|
|
# ratio_sequence[config["skip_frames_in_the_beginning"] :]
|
|
|
|
# ),
|
|
|
|
# bounds=([a_min, b_min, a_min, -t[-1]], [a_max, b_max, a_max, t[-1]]),
|
|
|
|
# )
|
|
|
|
# a: float | None = float(popt[0])
|
|
|
|
# b: float | None = float(popt[1])
|
|
|
|
# c: float | None = float(popt[2])
|
|
|
|
# dt: float | None = float(popt[3])
|
|
|
|
|
|
|
|
# except ValueError:
|
|
|
|
# a = None
|
|
|
|
# b = None
|
|
|
|
# c = None
|
|
|
|
# dt = None
|
|
|
|
|
|
|
|
# print(a, b, c, dt)
|
|
|
|
|
|
|
|
# f1 = func(t, a, b, c, dt)
|
|
|
|
# ratio_sequence_f1 = ratio_sequence - f1
|
|
|
|
# return ratio_sequence_f1, f1
|
|
|
|
|
|
|
|
|
|
|
|
def main(
|
|
|
|
*,
|
|
|
|
experiment_id: int = 4,
|
|
|
|
config_filename: str = "config.json",
|
|
|
|
highpass_freqency: float = 0.5,
|
|
|
|
lowpass_freqency: float = 10.0,
|
|
|
|
butter_worth_order: int = 4,
|
|
|
|
log_stage_name: str = "olivia_svd",
|
|
|
|
scale_before_substraction: bool = True,
|
|
|
|
plot_show: bool = True,
|
|
|
|
) -> None:
|
2024-03-01 01:36:18 +01:00
|
|
|
|
|
|
|
mylogger = create_logger(
|
|
|
|
save_logging_messages=True,
|
|
|
|
display_logging_messages=True,
|
2024-03-01 15:54:57 +01:00
|
|
|
log_stage_name=log_stage_name,
|
2024-03-01 01:36:18 +01:00
|
|
|
)
|
|
|
|
config = load_config(mylogger=mylogger, filename=config_filename)
|
|
|
|
|
|
|
|
roi_path: str = config["ref_image_path"]
|
|
|
|
|
|
|
|
control_file_handle = h5py.File(os.path.join(roi_path, "ROI_control.mat"), "r")
|
|
|
|
control_roi = (np.array(control_file_handle["roi"]).T) > 0
|
|
|
|
control_file_handle.close()
|
|
|
|
control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1]))
|
|
|
|
|
|
|
|
s_darken_file_handle = h5py.File(os.path.join(roi_path, "ROI_sDarken.mat"), "r")
|
|
|
|
s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0
|
|
|
|
s_darken_file_handle.close()
|
|
|
|
s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1]))
|
|
|
|
|
|
|
|
raw_data_path: str = os.path.join(
|
|
|
|
config["basic_path"],
|
|
|
|
config["recoding_data"],
|
|
|
|
config["mouse_identifier"],
|
|
|
|
config["raw_path"],
|
|
|
|
)
|
|
|
|
|
|
|
|
data_path: str = str(config["export_path"])
|
|
|
|
|
|
|
|
trails = get_trials(path=raw_data_path, experiment_id=experiment_id)
|
|
|
|
for i in range(0, trails.shape[0]):
|
|
|
|
trial_id = int(trails[i])
|
|
|
|
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
|
|
|
|
mylogger.info(f"Loading files for {experiment_name}")
|
|
|
|
|
|
|
|
data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz"))
|
|
|
|
rs = data["ratio_sequence"]
|
|
|
|
rs = rs.reshape((rs.shape[0] * rs.shape[1], rs.shape[2]))
|
|
|
|
rs_c = rs[control_roi, :]
|
|
|
|
rs_c_core, _, _ = torch.linalg.svd(torch.tensor(rs_c.T), full_matrices=False)
|
|
|
|
rs_c_core = rs_c_core[:, 0].numpy()
|
|
|
|
|
|
|
|
rs_s = rs[s_darken_roi, :]
|
|
|
|
rs_s_core, _, _ = torch.linalg.svd(torch.tensor(rs_s.T), full_matrices=False)
|
|
|
|
rs_s_core = rs_s_core[:, 0].numpy()
|
|
|
|
|
2024-03-01 15:54:57 +01:00
|
|
|
rs_s_core -= rs_s_core[config["skip_frames_in_the_beginning"] :].mean(
|
|
|
|
keepdims=True
|
|
|
|
)
|
|
|
|
rs_c_core -= rs_c_core[config["skip_frames_in_the_beginning"] :].mean(
|
|
|
|
keepdims=True
|
|
|
|
)
|
2024-03-01 01:36:18 +01:00
|
|
|
|
2024-03-01 15:54:57 +01:00
|
|
|
if scale_before_substraction:
|
|
|
|
rs_c_core *= (
|
|
|
|
rs_s_core[config["skip_frames_in_the_beginning"] :]
|
|
|
|
* rs_c_core[config["skip_frames_in_the_beginning"] :]
|
|
|
|
).sum() / (rs_c_core[config["skip_frames_in_the_beginning"] :] ** 2).sum()
|
2024-03-01 01:36:18 +01:00
|
|
|
|
|
|
|
if i == 0:
|
|
|
|
ratio_sequence = rs_s_core - rs_c_core
|
|
|
|
else:
|
|
|
|
ratio_sequence += rs_s_core - rs_c_core
|
|
|
|
|
|
|
|
ratio_sequence /= float(trails.shape[0])
|
|
|
|
|
|
|
|
t = np.arange(0, ratio_sequence.shape[0]) / 100.0
|
|
|
|
|
2024-03-01 15:54:57 +01:00
|
|
|
# ratio_sequence_f1, f1 = fit(
|
|
|
|
# ratio_sequence=ratio_sequence,
|
|
|
|
# t=t,
|
|
|
|
# config=config,
|
|
|
|
# )
|
|
|
|
|
|
|
|
first_trial_id: int = int(get_trials(raw_data_path, experiment_id).min())
|
|
|
|
(
|
|
|
|
meta_channels,
|
|
|
|
meta_mouse_markings,
|
|
|
|
meta_recording_date,
|
|
|
|
meta_stimulation_times,
|
|
|
|
meta_experiment_names,
|
|
|
|
meta_trial_recording_duration,
|
|
|
|
meta_frame_time,
|
|
|
|
meta_mouse,
|
|
|
|
data,
|
|
|
|
) = data_raw_loader(
|
|
|
|
raw_data_path=raw_data_path,
|
|
|
|
mylogger=mylogger,
|
|
|
|
experiment_id=experiment_id,
|
|
|
|
trial_id=first_trial_id,
|
|
|
|
device=torch.device("cpu"),
|
|
|
|
force_to_cpu_memory=True,
|
|
|
|
config=config,
|
|
|
|
)
|
|
|
|
|
|
|
|
b, a = scipy.signal.butter(
|
|
|
|
butter_worth_order,
|
|
|
|
lowpass_freqency,
|
|
|
|
btype="low",
|
|
|
|
output="ba",
|
|
|
|
fs=1.0 / meta_frame_time,
|
|
|
|
)
|
|
|
|
ratio_sequence_f1 = scipy.signal.filtfilt(b, a, ratio_sequence)
|
|
|
|
|
|
|
|
b, a = scipy.signal.butter(
|
|
|
|
butter_worth_order,
|
|
|
|
highpass_freqency,
|
|
|
|
btype="high",
|
|
|
|
output="ba",
|
|
|
|
fs=1.0 / meta_frame_time,
|
|
|
|
)
|
|
|
|
ratio_sequence_f2 = scipy.signal.filtfilt(b, a, ratio_sequence_f1)
|
|
|
|
|
|
|
|
idx = config["required_order"].index("acceptor")
|
|
|
|
acceptor = data[..., idx].mean(axis=0).mean(axis=0)
|
|
|
|
acceptor -= acceptor[config["skip_frames_in_the_beginning"] :].min()
|
|
|
|
acceptor /= acceptor[config["skip_frames_in_the_beginning"] :].max()
|
|
|
|
|
|
|
|
acceptor *= (
|
|
|
|
ratio_sequence_f2[config["skip_frames_in_the_beginning"] :].max()
|
|
|
|
- ratio_sequence_f2[config["skip_frames_in_the_beginning"] :].min()
|
|
|
|
)
|
|
|
|
acceptor += ratio_sequence_f2[config["skip_frames_in_the_beginning"] :].min()
|
|
|
|
|
|
|
|
plt.figure(figsize=(10, 10))
|
|
|
|
plt.subplot(2, 1, 1)
|
|
|
|
plt.plot(
|
|
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
|
|
ratio_sequence[config["skip_frames_in_the_beginning"] :],
|
|
|
|
label=f"sDarken - control (scaled:{scale_before_substraction})",
|
|
|
|
)
|
|
|
|
plt.plot(
|
|
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
|
|
ratio_sequence_f1[config["skip_frames_in_the_beginning"] :],
|
|
|
|
label=f"low pass {lowpass_freqency} Hz",
|
|
|
|
)
|
|
|
|
plt.plot(
|
|
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
|
|
ratio_sequence_f2[config["skip_frames_in_the_beginning"] :],
|
|
|
|
label=f"high pass {highpass_freqency} Hz",
|
|
|
|
)
|
|
|
|
plt.xlabel("Time [sec]")
|
|
|
|
plt.title(
|
|
|
|
f"Experiment {experiment_id} {config['recoding_data']} {config['mouse_identifier']}"
|
|
|
|
)
|
|
|
|
plt.legend()
|
|
|
|
plt.subplot(2, 1, 2)
|
|
|
|
plt.plot(
|
|
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
|
|
acceptor[config["skip_frames_in_the_beginning"] :],
|
|
|
|
color=(0.5, 0.5, 0.5),
|
|
|
|
label="light (acceptor)",
|
|
|
|
)
|
|
|
|
plt.plot(
|
|
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
|
|
ratio_sequence_f2[config["skip_frames_in_the_beginning"] :],
|
|
|
|
label=f"high pass {highpass_freqency} Hz",
|
|
|
|
)
|
2024-03-01 01:36:18 +01:00
|
|
|
plt.legend()
|
|
|
|
plt.xlabel("Time [sec]")
|
2024-03-01 15:54:57 +01:00
|
|
|
|
|
|
|
plt.savefig(
|
|
|
|
f"olivia_Exp{experiment_id}_{config['recoding_data']}_{config['mouse_identifier']}.png",
|
|
|
|
dpi=300,
|
|
|
|
)
|
|
|
|
if plot_show:
|
|
|
|
plt.show()
|
2024-03-01 01:36:18 +01:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
argh.dispatch_command(main)
|