gevi/functions/align_refref.py

61 lines
1.8 KiB
Python
Raw Normal View History

2024-02-28 16:14:50 +01:00
import torch
import torchvision as tv # type: ignore
import logging
from functions.ImageAlignment import ImageAlignment
from functions.calculate_translation import calculate_translation
from functions.calculate_rotation import calculate_rotation
@torch.no_grad()
def align_refref(
mylogger: logging.Logger,
ref_image_acceptor: torch.Tensor,
ref_image_donor: torch.Tensor,
batch_size: int,
fill_value: float = 0,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
2024-02-28 18:55:37 +01:00
image_alignment = ImageAlignment(
default_dtype=ref_image_acceptor.dtype, device=ref_image_acceptor.device
)
2024-02-28 16:14:50 +01:00
mylogger.info("Rotate ref image acceptor onto donor")
angle_refref = calculate_rotation(
image_alignment=image_alignment,
input=ref_image_acceptor.unsqueeze(0),
reference_image=ref_image_donor,
batch_size=batch_size,
)
ref_image_acceptor = tv.transforms.functional.affine(
img=ref_image_acceptor.unsqueeze(0),
angle=-float(angle_refref),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
)
mylogger.info("Translate ref image acceptor onto donor")
tvec_refref = calculate_translation(
image_alignment=image_alignment,
input=ref_image_acceptor,
reference_image=ref_image_donor,
batch_size=batch_size,
)
tvec_refref = tvec_refref[0, :]
ref_image_acceptor = tv.transforms.functional.affine(
img=ref_image_acceptor,
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
return angle_refref, tvec_refref, ref_image_acceptor, ref_image_donor