diff --git a/test_average_calculate.py b/test_average_calculate.py deleted file mode 100644 index 6bcafae..0000000 --- a/test_average_calculate.py +++ /dev/null @@ -1,113 +0,0 @@ -import torch -from functions.DataContainer import DataContainer -import numpy as np -from tqdm import trange - -# path: str = "/data_1/robert/2021-05-05/M3852M/raw" -path: str = "/data_1/robert/2021-05-21/M3852M/raw" -initital_mask_name: str | None = None -initital_mask_update: bool = True -initital_mask_roi: bool = False # default: True - -experiment_id: int = 2 -trial_id: int = 180 -start_position: int = 0 -start_position_coefficients: int = 100 -remove_heartbeat: bool = True # i.e. use SVD -bin_size: int = 4 -threshold: float | None = 0.05 # Between 0 and 1.0 - - -display_logging_messages: bool = False -save_logging_messages: bool = False - -# Post data processing modifiations -gaussian_blur_kernel_size: int | None = 3 -gaussian_blur_sigma: float = 1.0 -bin_size_post: int | None = None - -# ------------------------ - - -torch_device: torch.device = torch.device( - "cuda:0" if torch.cuda.is_available() else "cpu" -) - -af = DataContainer( - path=path, - device=torch_device, - display_logging_messages=display_logging_messages, - save_logging_messages=save_logging_messages, -) - - -list_of_experiments = af.get_experiments() -print( - f"The following experiments have been found:\n {list_of_experiments.cpu().numpy()}" -) -assert experiment_id in list_of_experiments -print(f"Continue with experiment: {experiment_id}") -list_of_trials = af.get_trials(experiment_id).cpu().numpy() -print(f"The following trials have been found:\n {list_of_trials}") - - -# mask -_, mask = af.automatic_load( - experiment_id=experiment_id, - trial_id=int(list_of_trials[0]), - start_position=start_position, - remove_heartbeat=remove_heartbeat, # i.e. use SVD - bin_size=bin_size, - initital_mask_name=initital_mask_name, - initital_mask_update=initital_mask_update, - initital_mask_roi=initital_mask_roi, - start_position_coefficients=start_position_coefficients, - gaussian_blur_kernel_size=gaussian_blur_kernel_size, - gaussian_blur_sigma=gaussian_blur_sigma, - bin_size_post=bin_size_post, - threshold=threshold, -) - -if mask is not None: - np.save("mask.npy", mask.cpu()) - - -# data -result: torch.Tensor | None = None -count_not_nan: torch.Tensor | None = None - -n: float = 0 -for trial_id in trange(0, len(list_of_trials)): - result_temp, _ = af.automatic_load( # type: ignore - experiment_id=experiment_id, - trial_id=int(list_of_trials[trial_id]), - start_position=start_position, - remove_heartbeat=remove_heartbeat, # i.e. use SVD - bin_size=bin_size, - initital_mask_name=initital_mask_name, - initital_mask_update=initital_mask_update, - initital_mask_roi=initital_mask_roi, - start_position_coefficients=start_position_coefficients, - gaussian_blur_kernel_size=gaussian_blur_kernel_size, - gaussian_blur_sigma=gaussian_blur_sigma, - bin_size_post=bin_size_post, - threshold=None, - ) - n += 1.0 - if result is None: - result = (result_temp - 1.0).nan_to_num(nan=0.0) - count_not_nan = torch.isfinite(result_temp).type(torch.float32) - else: - result += (result_temp - 1.0).nan_to_num(nan=0.0) - count_not_nan += torch.isfinite(result_temp).type(torch.float32) - - assert result is not None - if trial_id % 10 == 0: - np.save("result.npy", (result / count_not_nan).cpu()) - np.save("count_not_nan.npy", (count_not_nan / n).cpu()) - -assert result is not None -assert count_not_nan is not None - -np.save("result.npy", (result / count_not_nan).cpu()) -np.save("count_not_nan.npy", (count_not_nan / n).cpu())