Add files via upload
This commit is contained in:
parent
7f332a6fa9
commit
040460c590
2 changed files with 66 additions and 48 deletions
|
@ -9,6 +9,7 @@ def adjust_factor(
|
|||
upper_frequency_heartbeat: float,
|
||||
sample_frequency: float,
|
||||
mask: torch.Tensor,
|
||||
power_factors: None | list[float],
|
||||
) -> tuple[float, float]:
|
||||
|
||||
number_of_active_pixel: torch.Tensor = mask.type(dtype=torch.float32).sum()
|
||||
|
@ -23,60 +24,67 @@ def adjust_factor(
|
|||
signal_acceptor_offset = signal_acceptor.mean()
|
||||
signal_donor_offset = signal_donor.mean()
|
||||
|
||||
signal_acceptor = signal_acceptor - signal_acceptor_offset
|
||||
signal_donor = signal_donor - signal_donor_offset
|
||||
if power_factors is None:
|
||||
signal_acceptor = signal_acceptor - signal_acceptor_offset
|
||||
signal_donor = signal_donor - signal_donor_offset
|
||||
|
||||
blackman_window = torch.blackman_window(
|
||||
window_length=signal_acceptor.shape[0],
|
||||
periodic=True,
|
||||
dtype=signal_acceptor.dtype,
|
||||
device=signal_acceptor.device,
|
||||
)
|
||||
blackman_window = torch.blackman_window(
|
||||
window_length=signal_acceptor.shape[0],
|
||||
periodic=True,
|
||||
dtype=signal_acceptor.dtype,
|
||||
device=signal_acceptor.device,
|
||||
)
|
||||
|
||||
signal_acceptor *= blackman_window
|
||||
signal_donor *= blackman_window
|
||||
nfft: int = int(2 ** math.ceil(math.log2(signal_donor.shape[0])))
|
||||
nfft = max([256, nfft])
|
||||
signal_acceptor *= blackman_window
|
||||
signal_donor *= blackman_window
|
||||
nfft: int = int(2 ** math.ceil(math.log2(signal_donor.shape[0])))
|
||||
nfft = max([256, nfft])
|
||||
|
||||
signal_acceptor_fft: torch.Tensor = torch.fft.rfft(signal_acceptor, n=nfft)
|
||||
signal_donor_fft: torch.Tensor = torch.fft.rfft(signal_donor, n=nfft)
|
||||
signal_acceptor_fft: torch.Tensor = torch.fft.rfft(signal_acceptor, n=nfft)
|
||||
signal_donor_fft: torch.Tensor = torch.fft.rfft(signal_donor, n=nfft)
|
||||
|
||||
frequency_axis: torch.Tensor = (
|
||||
torch.fft.rfftfreq(nfft, device=signal_acceptor_fft.device) * sample_frequency
|
||||
)
|
||||
frequency_axis: torch.Tensor = (
|
||||
torch.fft.rfftfreq(nfft, device=signal_acceptor_fft.device)
|
||||
* sample_frequency
|
||||
)
|
||||
|
||||
signal_acceptor_power: torch.Tensor = torch.abs(signal_acceptor_fft) ** 2
|
||||
signal_acceptor_power[1:-1] *= 2
|
||||
signal_acceptor_power: torch.Tensor = torch.abs(signal_acceptor_fft) ** 2
|
||||
signal_acceptor_power[1:-1] *= 2
|
||||
|
||||
signal_donor_power: torch.Tensor = torch.abs(signal_donor_fft) ** 2
|
||||
signal_donor_power[1:-1] *= 2
|
||||
signal_donor_power: torch.Tensor = torch.abs(signal_donor_fft) ** 2
|
||||
signal_donor_power[1:-1] *= 2
|
||||
|
||||
if frequency_axis[-1] != (sample_frequency / 2.0):
|
||||
signal_acceptor_power[-1] *= 2
|
||||
signal_donor_power[-1] *= 2
|
||||
if frequency_axis[-1] != (sample_frequency / 2.0):
|
||||
signal_acceptor_power[-1] *= 2
|
||||
signal_donor_power[-1] *= 2
|
||||
|
||||
signal_acceptor_power /= blackman_window.sum() ** 2
|
||||
signal_donor_power /= blackman_window.sum() ** 2
|
||||
signal_acceptor_power /= blackman_window.sum() ** 2
|
||||
signal_donor_power /= blackman_window.sum() ** 2
|
||||
|
||||
idx = torch.where(
|
||||
(frequency_axis >= lower_frequency_heartbeat)
|
||||
* (frequency_axis <= upper_frequency_heartbeat)
|
||||
)[0]
|
||||
idx = torch.where(
|
||||
(frequency_axis >= lower_frequency_heartbeat)
|
||||
* (frequency_axis <= upper_frequency_heartbeat)
|
||||
)[0]
|
||||
|
||||
frequency_axis = frequency_axis[idx]
|
||||
signal_acceptor_power = signal_acceptor_power[idx]
|
||||
signal_donor_power = signal_donor_power[idx]
|
||||
frequency_axis = frequency_axis[idx]
|
||||
signal_acceptor_power = signal_acceptor_power[idx]
|
||||
signal_donor_power = signal_donor_power[idx]
|
||||
|
||||
acceptor_range = signal_acceptor_power.max() - signal_acceptor_power.min()
|
||||
acceptor_range: float = float(
|
||||
signal_acceptor_power.max() - signal_acceptor_power.min()
|
||||
)
|
||||
|
||||
donor_range = signal_donor_power.max() - signal_donor_power.min()
|
||||
donor_range: float = float(signal_donor_power.max() - signal_donor_power.min())
|
||||
else:
|
||||
donor_range = float(power_factors[0])
|
||||
acceptor_range = float(power_factors[1])
|
||||
|
||||
acceptor_correction_factor: float = float(
|
||||
0.5
|
||||
* (
|
||||
1
|
||||
+ (signal_acceptor_offset * torch.sqrt(donor_range))
|
||||
/ (signal_donor_offset * torch.sqrt(acceptor_range))
|
||||
+ (signal_acceptor_offset * math.sqrt(donor_range))
|
||||
/ (signal_donor_offset * math.sqrt(acceptor_range))
|
||||
)
|
||||
)
|
||||
|
||||
|
|
|
@ -25,6 +25,7 @@ def preprocessing(
|
|||
upper_frequency_heartbeat: float,
|
||||
sample_frequency: float,
|
||||
dtype: torch.dtype = torch.float32,
|
||||
power_factors: None | list[float] = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
|
||||
mask: torch.Tensor = make_mask(
|
||||
|
@ -44,20 +45,24 @@ def preprocessing(
|
|||
)
|
||||
|
||||
# Interpolate in-between images
|
||||
interpolate_along_time(camera_sequence)
|
||||
if power_factors is None:
|
||||
interpolate_along_time(camera_sequence)
|
||||
|
||||
camera_sequence_filtered: list[torch.Tensor] = []
|
||||
for id in range(0, len(camera_sequence)):
|
||||
camera_sequence_filtered.append(camera_sequence[id].clone())
|
||||
|
||||
idx_volume: int = cameras.index("volume")
|
||||
heart_rate: float = heart_beat_frequency(
|
||||
input=camera_sequence_filtered[idx_volume],
|
||||
lower_frequency_heartbeat=lower_frequency_heartbeat,
|
||||
upper_frequency_heartbeat=upper_frequency_heartbeat,
|
||||
sample_frequency=sample_frequency,
|
||||
mask=mask,
|
||||
)
|
||||
if power_factors is None:
|
||||
idx_volume: int = cameras.index("volume")
|
||||
heart_rate: None | float = heart_beat_frequency(
|
||||
input=camera_sequence_filtered[idx_volume],
|
||||
lower_frequency_heartbeat=lower_frequency_heartbeat,
|
||||
upper_frequency_heartbeat=upper_frequency_heartbeat,
|
||||
sample_frequency=sample_frequency,
|
||||
mask=mask,
|
||||
)
|
||||
else:
|
||||
heart_rate = None
|
||||
|
||||
camera_sequence_filtered = gauss_smear(
|
||||
camera_sequence_filtered,
|
||||
|
@ -88,8 +93,12 @@ def preprocessing(
|
|||
)
|
||||
results.append(output)
|
||||
|
||||
lower_frequency_heartbeat_selection: float = heart_rate - 3
|
||||
upper_frequency_heartbeat_selection: float = heart_rate + 3
|
||||
if heart_rate is not None:
|
||||
lower_frequency_heartbeat_selection: float = heart_rate - 3
|
||||
upper_frequency_heartbeat_selection: float = heart_rate + 3
|
||||
else:
|
||||
lower_frequency_heartbeat_selection = 0
|
||||
upper_frequency_heartbeat_selection = 0
|
||||
|
||||
donor_correction_factor, acceptor_correction_factor = adjust_factor(
|
||||
input_acceptor=results[0],
|
||||
|
@ -98,6 +107,7 @@ def preprocessing(
|
|||
upper_frequency_heartbeat=upper_frequency_heartbeat_selection,
|
||||
sample_frequency=sample_frequency,
|
||||
mask=mask,
|
||||
power_factors=power_factors,
|
||||
)
|
||||
|
||||
results[0] = acceptor_correction_factor * (
|
||||
|
|
Loading…
Reference in a new issue