Add files via upload
This commit is contained in:
parent
db43df93eb
commit
2290dfe0d9
8 changed files with 648 additions and 420 deletions
60
config_M3879M_2021-10-05.json
Normal file
60
config_M3879M_2021-10-05.json
Normal file
|
@ -0,0 +1,60 @@
|
|||
{
|
||||
"basic_path": "/data_1/robert",
|
||||
"recoding_data": "2021-10-05",
|
||||
"mouse_identifier": "M3879M",
|
||||
"raw_path": "raw",
|
||||
"export_path": "output_M3879M_2021-10-05",
|
||||
"ref_image_path": "ref_images_M3879M_2021-10-05",
|
||||
// Ratio Sequence
|
||||
"classical_ratio_mode": true, // true: a/d false: 1+a-d
|
||||
// Regression
|
||||
//"target_camera_acceptor": "acceptor",
|
||||
"target_camera_acceptor": "",
|
||||
"regressor_cameras_acceptor": [
|
||||
"oxygenation",
|
||||
"volume"
|
||||
],
|
||||
"target_camera_donor": "donor",
|
||||
"regressor_cameras_donor": [
|
||||
// "oxygenation",
|
||||
"volume"
|
||||
],
|
||||
// binning
|
||||
"binning_enable": true,
|
||||
"binning_at_the_end": false,
|
||||
"binning_kernel_size": 4,
|
||||
"binning_stride": 4,
|
||||
"binning_divisor_override": 1,
|
||||
// alignment
|
||||
"alignment_batch_size": 200,
|
||||
"rotation_stabilization_threshold_factor": 3.0, // >= 1.0
|
||||
"rotation_stabilization_threshold_border": 0.9, // <= 1.0
|
||||
// Heart beat detection
|
||||
"lower_freqency_bandpass": 5.0, // Hz
|
||||
"upper_freqency_bandpass": 14.0, // Hz
|
||||
"heartbeat_filtfilt_chuck_size": 10,
|
||||
// Gauss smear
|
||||
"gauss_smear_spatial_width": 8,
|
||||
"gauss_smear_temporal_width": 0.1,
|
||||
"gauss_smear_use_matlab_mask": false,
|
||||
// LED Ramp on
|
||||
"skip_frames_in_the_beginning": 100, // Frames
|
||||
// PyTorch
|
||||
"dtype": "float32",
|
||||
"force_to_cpu": false,
|
||||
// Save
|
||||
"save_as_python": true, // produces .npz files (compressed)
|
||||
"save_as_matlab": false, // produces .hd5 file (compressed)
|
||||
// Save extra information
|
||||
"save_alignment": false,
|
||||
"save_heartbeat": false,
|
||||
"save_factors": false,
|
||||
"save_regression_coefficients": false,
|
||||
// Not important parameter
|
||||
"required_order": [
|
||||
"acceptor",
|
||||
"donor",
|
||||
"oxygenation",
|
||||
"volume"
|
||||
]
|
||||
}
|
60
config_M_Sert_Cre_41.json
Normal file
60
config_M_Sert_Cre_41.json
Normal file
|
@ -0,0 +1,60 @@
|
|||
{
|
||||
"basic_path": "/data_1/hendrik",
|
||||
"recoding_data": "2023-07-17",
|
||||
"mouse_identifier": "M_Sert_Cre_41",
|
||||
"raw_path": "raw",
|
||||
"export_path": "output_M_Sert_Cre_41",
|
||||
"ref_image_path": "ref_images_M_Sert_Cre_41",
|
||||
// Ratio Sequence
|
||||
"classical_ratio_mode": true, // true: a/d false: 1+a-d
|
||||
// Regression
|
||||
//"target_camera_acceptor": "acceptor",
|
||||
"target_camera_acceptor": "",
|
||||
"regressor_cameras_acceptor": [
|
||||
"oxygenation",
|
||||
"volume"
|
||||
],
|
||||
"target_camera_donor": "donor",
|
||||
"regressor_cameras_donor": [
|
||||
// "oxygenation",
|
||||
"volume"
|
||||
],
|
||||
// binning
|
||||
"binning_enable": true,
|
||||
"binning_at_the_end": false,
|
||||
"binning_kernel_size": 4,
|
||||
"binning_stride": 4,
|
||||
"binning_divisor_override": 1,
|
||||
// alignment
|
||||
"alignment_batch_size": 200,
|
||||
"rotation_stabilization_threshold_factor": 3.0, // >= 1.0
|
||||
"rotation_stabilization_threshold_border": 0.9, // <= 1.0
|
||||
// Heart beat detection
|
||||
"lower_freqency_bandpass": 5.0, // Hz
|
||||
"upper_freqency_bandpass": 14.0, // Hz
|
||||
"heartbeat_filtfilt_chuck_size": 10,
|
||||
// Gauss smear
|
||||
"gauss_smear_spatial_width": 8,
|
||||
"gauss_smear_temporal_width": 0.1,
|
||||
"gauss_smear_use_matlab_mask": false,
|
||||
// LED Ramp on
|
||||
"skip_frames_in_the_beginning": 100, // Frames
|
||||
// PyTorch
|
||||
"dtype": "float32",
|
||||
"force_to_cpu": false,
|
||||
// Save
|
||||
"save_as_python": true, // produces .npz files (compressed)
|
||||
"save_as_matlab": false, // produces .hd5 file (compressed)
|
||||
// Save extra information
|
||||
"save_alignment": false,
|
||||
"save_heartbeat": false,
|
||||
"save_factors": false,
|
||||
"save_regression_coefficients": false,
|
||||
// Not important parameter
|
||||
"required_order": [
|
||||
"acceptor",
|
||||
"donor",
|
||||
"oxygenation",
|
||||
"volume"
|
||||
]
|
||||
}
|
60
config_M_Sert_Cre_49.json
Normal file
60
config_M_Sert_Cre_49.json
Normal file
|
@ -0,0 +1,60 @@
|
|||
{
|
||||
"basic_path": "/data_1/hendrik",
|
||||
"recoding_data": "2023-03-15",
|
||||
"mouse_identifier": "M_Sert_Cre_49",
|
||||
"raw_path": "raw",
|
||||
"export_path": "output_M_Sert_Cre_49",
|
||||
"ref_image_path": "ref_images_M_Sert_Cre_49",
|
||||
// Ratio Sequence
|
||||
"classical_ratio_mode": true, // true: a/d false: 1+a-d
|
||||
// Regression
|
||||
//"target_camera_acceptor": "acceptor",
|
||||
"target_camera_acceptor": "",
|
||||
"regressor_cameras_acceptor": [
|
||||
"oxygenation",
|
||||
"volume"
|
||||
],
|
||||
"target_camera_donor": "donor",
|
||||
"regressor_cameras_donor": [
|
||||
// "oxygenation",
|
||||
"volume"
|
||||
],
|
||||
// binning
|
||||
"binning_enable": true,
|
||||
"binning_at_the_end": false,
|
||||
"binning_kernel_size": 4,
|
||||
"binning_stride": 4,
|
||||
"binning_divisor_override": 1,
|
||||
// alignment
|
||||
"alignment_batch_size": 200,
|
||||
"rotation_stabilization_threshold_factor": 3.0, // >= 1.0
|
||||
"rotation_stabilization_threshold_border": 0.9, // <= 1.0
|
||||
// Heart beat detection
|
||||
"lower_freqency_bandpass": 5.0, // Hz
|
||||
"upper_freqency_bandpass": 14.0, // Hz
|
||||
"heartbeat_filtfilt_chuck_size": 10,
|
||||
// Gauss smear
|
||||
"gauss_smear_spatial_width": 8,
|
||||
"gauss_smear_temporal_width": 0.1,
|
||||
"gauss_smear_use_matlab_mask": false,
|
||||
// LED Ramp on
|
||||
"skip_frames_in_the_beginning": 100, // Frames
|
||||
// PyTorch
|
||||
"dtype": "float32",
|
||||
"force_to_cpu": false,
|
||||
// Save
|
||||
"save_as_python": true, // produces .npz files (compressed)
|
||||
"save_as_matlab": false, // produces .hd5 file (compressed)
|
||||
// Save extra information
|
||||
"save_alignment": false,
|
||||
"save_heartbeat": false,
|
||||
"save_factors": false,
|
||||
"save_regression_coefficients": false,
|
||||
// Not important parameter
|
||||
"required_order": [
|
||||
"acceptor",
|
||||
"donor",
|
||||
"oxygenation",
|
||||
"volume"
|
||||
]
|
||||
}
|
|
@ -23,7 +23,7 @@ mylogger = create_logger(
|
|||
)
|
||||
config = load_config(mylogger=mylogger)
|
||||
|
||||
experiment_id: int = 1
|
||||
experiment_id: int = 2
|
||||
|
||||
raw_data_path: str = os.path.join(
|
||||
config["basic_path"],
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import os
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
import argh
|
||||
|
||||
from functions.get_experiments import get_experiments
|
||||
from functions.get_trials import get_trials
|
||||
|
@ -11,51 +11,51 @@ from functions.get_torch_device import get_torch_device
|
|||
from functions.load_config import load_config
|
||||
from functions.data_raw_loader import data_raw_loader
|
||||
|
||||
mylogger = create_logger(
|
||||
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_1"
|
||||
)
|
||||
|
||||
config = load_config(mylogger=mylogger)
|
||||
def main(*, config_filename: str = "config.json") -> None:
|
||||
mylogger = create_logger(
|
||||
save_logging_messages=True,
|
||||
display_logging_messages=True,
|
||||
log_stage_name="stage_1",
|
||||
)
|
||||
|
||||
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
||||
config = load_config(mylogger=mylogger, filename=config_filename)
|
||||
|
||||
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
||||
device: torch.device = torch.device("cpu")
|
||||
else:
|
||||
else:
|
||||
device = get_torch_device(mylogger, config["force_to_cpu"])
|
||||
|
||||
|
||||
dtype_str: str = config["dtype"]
|
||||
dtype: torch.dtype = getattr(torch, dtype_str)
|
||||
|
||||
raw_data_path: str = os.path.join(
|
||||
raw_data_path: str = os.path.join(
|
||||
config["basic_path"],
|
||||
config["recoding_data"],
|
||||
config["mouse_identifier"],
|
||||
config["raw_path"],
|
||||
)
|
||||
)
|
||||
|
||||
mylogger.info(f"Using data path: {raw_data_path}")
|
||||
mylogger.info(f"Using data path: {raw_data_path}")
|
||||
|
||||
first_experiment_id: int = int(get_experiments(raw_data_path).min())
|
||||
first_trial_id: int = int(get_trials(raw_data_path, first_experiment_id).min())
|
||||
first_experiment_id: int = int(get_experiments(raw_data_path).min())
|
||||
first_trial_id: int = int(get_trials(raw_data_path, first_experiment_id).min())
|
||||
|
||||
meta_channels: list[str]
|
||||
meta_mouse_markings: str
|
||||
meta_recording_date: str
|
||||
meta_stimulation_times: dict
|
||||
meta_experiment_names: dict
|
||||
meta_trial_recording_duration: float
|
||||
meta_frame_time: float
|
||||
meta_mouse: str
|
||||
data: torch.Tensor
|
||||
meta_channels: list[str]
|
||||
meta_mouse_markings: str
|
||||
meta_recording_date: str
|
||||
meta_stimulation_times: dict
|
||||
meta_experiment_names: dict
|
||||
meta_trial_recording_duration: float
|
||||
meta_frame_time: float
|
||||
meta_mouse: str
|
||||
data: torch.Tensor
|
||||
|
||||
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
||||
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
||||
force_to_cpu_memory: bool = True
|
||||
else:
|
||||
else:
|
||||
force_to_cpu_memory = False
|
||||
|
||||
mylogger.info("Loading data")
|
||||
mylogger.info("Loading data")
|
||||
|
||||
(
|
||||
(
|
||||
meta_channels,
|
||||
meta_mouse_markings,
|
||||
meta_recording_date,
|
||||
|
@ -65,7 +65,7 @@ mylogger.info("Loading data")
|
|||
meta_frame_time,
|
||||
meta_mouse,
|
||||
data,
|
||||
) = data_raw_loader(
|
||||
) = data_raw_loader(
|
||||
raw_data_path=raw_data_path,
|
||||
mylogger=mylogger,
|
||||
experiment_id=first_experiment_id,
|
||||
|
@ -73,15 +73,15 @@ mylogger.info("Loading data")
|
|||
device=device,
|
||||
force_to_cpu_memory=force_to_cpu_memory,
|
||||
config=config,
|
||||
)
|
||||
mylogger.info("-==- Done -==-")
|
||||
)
|
||||
mylogger.info("-==- Done -==-")
|
||||
|
||||
output_path = config["ref_image_path"]
|
||||
mylogger.info(f"Create directory {output_path} in the case it does not exist")
|
||||
os.makedirs(output_path, exist_ok=True)
|
||||
output_path = config["ref_image_path"]
|
||||
mylogger.info(f"Create directory {output_path} in the case it does not exist")
|
||||
os.makedirs(output_path, exist_ok=True)
|
||||
|
||||
mylogger.info("Reference images")
|
||||
for i in range(0, len(meta_channels)):
|
||||
mylogger.info("Reference images")
|
||||
for i in range(0, len(meta_channels)):
|
||||
temp_path: str = os.path.join(output_path, meta_channels[i] + ".npy")
|
||||
mylogger.info(f"Extract and save: {temp_path}")
|
||||
frame_id: int = data.shape[-2] // 2
|
||||
|
@ -93,19 +93,19 @@ for i in range(0, len(meta_channels)):
|
|||
.numpy()
|
||||
)
|
||||
np.save(temp_path, ref_image)
|
||||
mylogger.info("-==- Done -==-")
|
||||
mylogger.info("-==- Done -==-")
|
||||
|
||||
sample_frequency: float = 1.0 / meta_frame_time
|
||||
mylogger.info(
|
||||
sample_frequency: float = 1.0 / meta_frame_time
|
||||
mylogger.info(
|
||||
(
|
||||
f"Heartbeat power {config['lower_freqency_bandpass']} Hz"
|
||||
f" - {config['upper_freqency_bandpass']} Hz,"
|
||||
f" sample-rate: {sample_frequency},"
|
||||
f" skipping the first {config['skip_frames_in_the_beginning']} frames"
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
for i in range(0, len(meta_channels)):
|
||||
for i in range(0, len(meta_channels)):
|
||||
temp_path = os.path.join(output_path, meta_channels[i] + "_var.npy")
|
||||
mylogger.info(f"Extract and save: {temp_path}")
|
||||
|
||||
|
@ -117,9 +117,13 @@ for i in range(0, len(meta_channels)):
|
|||
filtfilt_chuck_size=10,
|
||||
)
|
||||
|
||||
heartbeat_power = heartbeat_ts[..., config["skip_frames_in_the_beginning"] :].var(
|
||||
dim=-1
|
||||
)
|
||||
heartbeat_power = heartbeat_ts[
|
||||
..., config["skip_frames_in_the_beginning"] :
|
||||
].var(dim=-1)
|
||||
np.save(temp_path, heartbeat_power)
|
||||
|
||||
mylogger.info("-==- Done -==-")
|
||||
mylogger.info("-==- Done -==-")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
argh.dispatch_command(main)
|
||||
|
|
|
@ -3,6 +3,7 @@ import matplotlib
|
|||
import numpy as np
|
||||
import torch
|
||||
import os
|
||||
import argh
|
||||
|
||||
from matplotlib.widgets import Slider, Button # type:ignore
|
||||
from functools import partial
|
||||
|
@ -11,37 +12,92 @@ from functions.create_logger import create_logger
|
|||
from functions.get_torch_device import get_torch_device
|
||||
from functions.load_config import load_config
|
||||
|
||||
mylogger = create_logger(
|
||||
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_2"
|
||||
)
|
||||
|
||||
config = load_config(mylogger=mylogger)
|
||||
def main(*, config_filename: str = "config.json") -> None:
|
||||
mylogger = create_logger(
|
||||
save_logging_messages=True,
|
||||
display_logging_messages=True,
|
||||
log_stage_name="stage_2",
|
||||
)
|
||||
|
||||
path: str = config["ref_image_path"]
|
||||
use_channel: str = "donor"
|
||||
spatial_width: float = 4.0
|
||||
temporal_width: float = 0.1
|
||||
config = load_config(mylogger=mylogger, filename=config_filename)
|
||||
|
||||
threshold: float = 0.05
|
||||
path: str = config["ref_image_path"]
|
||||
use_channel: str = "donor"
|
||||
spatial_width: float = 4.0
|
||||
temporal_width: float = 0.1
|
||||
|
||||
heartbeat_mask_threshold_file: str = os.path.join(path, "heartbeat_mask_threshold.npy")
|
||||
if os.path.isfile(heartbeat_mask_threshold_file):
|
||||
mylogger.info(f"loading previous threshold file: {heartbeat_mask_threshold_file}")
|
||||
threshold: float = 0.05
|
||||
|
||||
heartbeat_mask_threshold_file: str = os.path.join(
|
||||
path, "heartbeat_mask_threshold.npy"
|
||||
)
|
||||
if os.path.isfile(heartbeat_mask_threshold_file):
|
||||
mylogger.info(
|
||||
f"loading previous threshold file: {heartbeat_mask_threshold_file}"
|
||||
)
|
||||
threshold = float(np.load(heartbeat_mask_threshold_file)[0])
|
||||
|
||||
mylogger.info(f"initial threshold is {threshold}")
|
||||
mylogger.info(f"initial threshold is {threshold}")
|
||||
|
||||
image_ref_file: str = os.path.join(path, use_channel + ".npy")
|
||||
image_var_file: str = os.path.join(path, use_channel + "_var.npy")
|
||||
heartbeat_mask_file: str = os.path.join(path, "heartbeat_mask.npy")
|
||||
image_ref_file: str = os.path.join(path, use_channel + ".npy")
|
||||
image_var_file: str = os.path.join(path, use_channel + "_var.npy")
|
||||
heartbeat_mask_file: str = os.path.join(path, "heartbeat_mask.npy")
|
||||
|
||||
device = get_torch_device(mylogger, config["force_to_cpu"])
|
||||
device = get_torch_device(mylogger, config["force_to_cpu"])
|
||||
|
||||
mylogger.info(f"loading image reference file: {image_ref_file}")
|
||||
image_ref: np.ndarray = np.load(image_ref_file)
|
||||
image_ref /= image_ref.max()
|
||||
|
||||
def next_frame(
|
||||
mylogger.info(f"loading image heartbeat power: {image_var_file}")
|
||||
image_var: np.ndarray = np.load(image_var_file)
|
||||
image_var /= image_var.max()
|
||||
|
||||
mylogger.info("Smear the image heartbeat power patially")
|
||||
temp, _ = gauss_smear_individual(
|
||||
input=torch.tensor(image_var[..., np.newaxis], device=device),
|
||||
spatial_width=spatial_width,
|
||||
temporal_width=temporal_width,
|
||||
use_matlab_mask=False,
|
||||
)
|
||||
temp /= temp.max()
|
||||
|
||||
mylogger.info("-==- DONE -==-")
|
||||
|
||||
image_3color = np.concatenate(
|
||||
(
|
||||
np.zeros_like(image_ref[..., np.newaxis]),
|
||||
image_ref[..., np.newaxis],
|
||||
temp.cpu().numpy(),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
mylogger.info("Prepare image")
|
||||
|
||||
display_image = image_3color.copy()
|
||||
display_image[..., 2] = display_image[..., 0]
|
||||
mask = np.where(image_3color[..., 2] >= threshold, 1.0, np.nan)[..., np.newaxis]
|
||||
display_image *= mask
|
||||
display_image = np.nan_to_num(display_image, nan=1.0)
|
||||
|
||||
value_sort = np.sort(image_var.flatten())
|
||||
value_sort_max = value_sort[int(value_sort.shape[0] * 0.95)]
|
||||
mylogger.info("-==- DONE -==-")
|
||||
|
||||
mylogger.info("Create figure")
|
||||
|
||||
fig: matplotlib.figure.Figure = plt.figure()
|
||||
|
||||
image_handle = plt.imshow(display_image, vmin=0, vmax=1, cmap="hot")
|
||||
|
||||
mylogger.info("Add controls")
|
||||
|
||||
def next_frame(
|
||||
i: float, images: np.ndarray, image_handle: matplotlib.image.AxesImage
|
||||
) -> None:
|
||||
global threshold
|
||||
) -> None:
|
||||
nonlocal threshold
|
||||
threshold = i
|
||||
|
||||
display_image: np.ndarray = images.copy()
|
||||
|
@ -53,14 +109,13 @@ def next_frame(
|
|||
image_handle.set_data(display_image)
|
||||
return
|
||||
|
||||
|
||||
def on_clicked_accept(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
global threshold
|
||||
global image_3color
|
||||
global path
|
||||
global mylogger
|
||||
global heartbeat_mask_file
|
||||
global heartbeat_mask_threshold_file
|
||||
def on_clicked_accept(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
nonlocal threshold
|
||||
nonlocal image_3color
|
||||
nonlocal path
|
||||
nonlocal mylogger
|
||||
nonlocal heartbeat_mask_file
|
||||
nonlocal heartbeat_mask_threshold_file
|
||||
|
||||
mylogger.info(f"Threshold: {threshold}")
|
||||
|
||||
|
@ -71,83 +126,37 @@ def on_clicked_accept(event: matplotlib.backend_bases.MouseEvent) -> None:
|
|||
np.save(heartbeat_mask_threshold_file, np.array([threshold]))
|
||||
exit()
|
||||
|
||||
|
||||
def on_clicked_cancel(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
def on_clicked_cancel(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
exit()
|
||||
|
||||
|
||||
mylogger.info(f"loading image reference file: {image_ref_file}")
|
||||
image_ref: np.ndarray = np.load(image_ref_file)
|
||||
image_ref /= image_ref.max()
|
||||
|
||||
mylogger.info(f"loading image heartbeat power: {image_var_file}")
|
||||
image_var: np.ndarray = np.load(image_var_file)
|
||||
image_var /= image_var.max()
|
||||
|
||||
mylogger.info("Smear the image heartbeat power patially")
|
||||
temp, _ = gauss_smear_individual(
|
||||
input=torch.tensor(image_var[..., np.newaxis], device=device),
|
||||
spatial_width=spatial_width,
|
||||
temporal_width=temporal_width,
|
||||
use_matlab_mask=False,
|
||||
)
|
||||
temp /= temp.max()
|
||||
|
||||
mylogger.info("-==- DONE -==-")
|
||||
|
||||
image_3color = np.concatenate(
|
||||
(
|
||||
np.zeros_like(image_ref[..., np.newaxis]),
|
||||
image_ref[..., np.newaxis],
|
||||
temp.cpu().numpy(),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
mylogger.info("Prepare image")
|
||||
|
||||
display_image = image_3color.copy()
|
||||
display_image[..., 2] = display_image[..., 0]
|
||||
mask = np.where(image_3color[..., 2] >= threshold, 1.0, np.nan)[..., np.newaxis]
|
||||
display_image *= mask
|
||||
display_image = np.nan_to_num(display_image, nan=1.0)
|
||||
|
||||
value_sort = np.sort(image_var.flatten())
|
||||
value_sort_max = value_sort[int(value_sort.shape[0] * 0.95)]
|
||||
mylogger.info("-==- DONE -==-")
|
||||
|
||||
mylogger.info("Create figure")
|
||||
|
||||
fig: matplotlib.figure.Figure = plt.figure()
|
||||
|
||||
image_handle = plt.imshow(display_image, vmin=0, vmax=1, cmap="hot")
|
||||
|
||||
mylogger.info("Add controls")
|
||||
|
||||
axfreq = fig.add_axes(rect=(0.4, 0.9, 0.3, 0.03))
|
||||
slice_slider = Slider(
|
||||
axfreq = fig.add_axes(rect=(0.4, 0.9, 0.3, 0.03))
|
||||
slice_slider = Slider(
|
||||
ax=axfreq,
|
||||
label="Threshold",
|
||||
valmin=0,
|
||||
valmax=value_sort_max,
|
||||
valinit=threshold,
|
||||
valstep=value_sort_max / 100.0,
|
||||
)
|
||||
axbutton_accept = fig.add_axes(rect=(0.3, 0.85, 0.2, 0.04))
|
||||
button_accept = Button(
|
||||
)
|
||||
axbutton_accept = fig.add_axes(rect=(0.3, 0.85, 0.2, 0.04))
|
||||
button_accept = Button(
|
||||
ax=axbutton_accept, label="Accept", image=None, color="0.85", hovercolor="0.95"
|
||||
)
|
||||
button_accept.on_clicked(on_clicked_accept) # type: ignore
|
||||
)
|
||||
button_accept.on_clicked(on_clicked_accept) # type: ignore
|
||||
|
||||
axbutton_cancel = fig.add_axes(rect=(0.55, 0.85, 0.2, 0.04))
|
||||
button_cancel = Button(
|
||||
axbutton_cancel = fig.add_axes(rect=(0.55, 0.85, 0.2, 0.04))
|
||||
button_cancel = Button(
|
||||
ax=axbutton_cancel, label="Cancel", image=None, color="0.85", hovercolor="0.95"
|
||||
)
|
||||
button_cancel.on_clicked(on_clicked_cancel) # type: ignore
|
||||
)
|
||||
button_cancel.on_clicked(on_clicked_cancel) # type: ignore
|
||||
|
||||
slice_slider.on_changed(
|
||||
slice_slider.on_changed(
|
||||
partial(next_frame, images=image_3color, image_handle=image_handle)
|
||||
)
|
||||
)
|
||||
|
||||
mylogger.info("Display")
|
||||
plt.show()
|
||||
mylogger.info("Display")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
argh.dispatch_command(main)
|
||||
|
|
|
@ -9,9 +9,10 @@ from matplotlib.widgets import Button # type:ignore
|
|||
from roipoly import RoiPoly # type:ignore
|
||||
|
||||
from functions.create_logger import create_logger
|
||||
from functions.get_torch_device import get_torch_device
|
||||
from functions.load_config import load_config
|
||||
|
||||
import argh
|
||||
|
||||
|
||||
def compose_image(image_3color: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
||||
display_image = image_3color.copy()
|
||||
|
@ -20,31 +21,72 @@ def compose_image(image_3color: np.ndarray, mask: np.ndarray) -> np.ndarray:
|
|||
return display_image
|
||||
|
||||
|
||||
def on_clicked_accept(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
global mylogger
|
||||
global refined_mask_file
|
||||
global mask
|
||||
def main(*, config_filename: str = "config.json") -> None:
|
||||
mylogger = create_logger(
|
||||
save_logging_messages=True,
|
||||
display_logging_messages=True,
|
||||
log_stage_name="stage_3",
|
||||
)
|
||||
|
||||
config = load_config(mylogger=mylogger, filename=config_filename)
|
||||
|
||||
path: str = config["ref_image_path"]
|
||||
use_channel: str = "donor"
|
||||
|
||||
image_ref_file: str = os.path.join(path, use_channel + ".npy")
|
||||
heartbeat_mask_file: str = os.path.join(path, "heartbeat_mask.npy")
|
||||
refined_mask_file: str = os.path.join(path, "mask_not_rotated.npy")
|
||||
|
||||
mylogger.info(f"loading image reference file: {image_ref_file}")
|
||||
image_ref: np.ndarray = np.load(image_ref_file)
|
||||
image_ref /= image_ref.max()
|
||||
|
||||
mylogger.info(f"loading heartbeat mask: {heartbeat_mask_file}")
|
||||
mask: np.ndarray = np.load(heartbeat_mask_file)
|
||||
|
||||
image_3color = np.concatenate(
|
||||
(
|
||||
np.zeros_like(image_ref[..., np.newaxis]),
|
||||
image_ref[..., np.newaxis],
|
||||
np.zeros_like(image_ref[..., np.newaxis]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
mylogger.info("-==- DONE -==-")
|
||||
|
||||
fig, ax_main = plt.subplots()
|
||||
|
||||
display_image = compose_image(image_3color=image_3color, mask=mask)
|
||||
image_handle = ax_main.imshow(display_image, vmin=0, vmax=1, cmap="hot")
|
||||
|
||||
mylogger.info("Add controls")
|
||||
|
||||
def on_clicked_accept(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
nonlocal mylogger
|
||||
nonlocal refined_mask_file
|
||||
nonlocal mask
|
||||
|
||||
mylogger.info(f"Save mask to: {refined_mask_file}")
|
||||
np.save(refined_mask_file, mask)
|
||||
|
||||
exit()
|
||||
|
||||
|
||||
def on_clicked_cancel(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
global mylogger
|
||||
def on_clicked_cancel(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
nonlocal mylogger
|
||||
mylogger.info("Ended without saving the mask")
|
||||
exit()
|
||||
|
||||
|
||||
def on_clicked_add(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
global new_roi
|
||||
global mask
|
||||
global image_3color
|
||||
global display_image
|
||||
global mylogger
|
||||
def on_clicked_add(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
nonlocal new_roi # type: ignore
|
||||
nonlocal mask
|
||||
nonlocal image_3color
|
||||
nonlocal display_image
|
||||
nonlocal mylogger
|
||||
if len(new_roi.x) > 0:
|
||||
mylogger.info("A ROI with the following coordiantes has been added to the mask")
|
||||
mylogger.info(
|
||||
"A ROI with the following coordiantes has been added to the mask"
|
||||
)
|
||||
for i in range(0, len(new_roi.x)):
|
||||
mylogger.info(f"{round(new_roi.x[i],1)} x {round(new_roi.y[i],1)}")
|
||||
mylogger.info("")
|
||||
|
@ -58,12 +100,11 @@ def on_clicked_add(event: matplotlib.backend_bases.MouseEvent) -> None:
|
|||
|
||||
new_roi = RoiPoly(ax=ax_main, color="r", close_fig=False, show_fig=False)
|
||||
|
||||
|
||||
def on_clicked_remove(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
global new_roi
|
||||
global mask
|
||||
global image_3color
|
||||
global display_image
|
||||
def on_clicked_remove(event: matplotlib.backend_bases.MouseEvent) -> None:
|
||||
nonlocal new_roi # type: ignore
|
||||
nonlocal mask
|
||||
nonlocal image_3color
|
||||
nonlocal display_image
|
||||
if len(new_roi.x) > 0:
|
||||
mylogger.info(
|
||||
"A ROI with the following coordiantes has been removed from the mask"
|
||||
|
@ -80,78 +121,45 @@ def on_clicked_remove(event: matplotlib.backend_bases.MouseEvent) -> None:
|
|||
plt.draw()
|
||||
new_roi = RoiPoly(ax=ax_main, color="r", close_fig=False, show_fig=False)
|
||||
|
||||
|
||||
mylogger = create_logger(
|
||||
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_3"
|
||||
)
|
||||
|
||||
config = load_config(mylogger=mylogger)
|
||||
|
||||
device = get_torch_device(mylogger, config["force_to_cpu"])
|
||||
|
||||
path: str = config["ref_image_path"]
|
||||
use_channel: str = "donor"
|
||||
|
||||
image_ref_file: str = os.path.join(path, use_channel + ".npy")
|
||||
heartbeat_mask_file: str = os.path.join(path, "heartbeat_mask.npy")
|
||||
refined_mask_file: str = os.path.join(path, "mask_not_rotated.npy")
|
||||
|
||||
mylogger.info(f"loading image reference file: {image_ref_file}")
|
||||
image_ref: np.ndarray = np.load(image_ref_file)
|
||||
image_ref /= image_ref.max()
|
||||
|
||||
mylogger.info(f"loading heartbeat mask: {heartbeat_mask_file}")
|
||||
mask: np.ndarray = np.load(heartbeat_mask_file)
|
||||
|
||||
image_3color = np.concatenate(
|
||||
(
|
||||
np.zeros_like(image_ref[..., np.newaxis]),
|
||||
image_ref[..., np.newaxis],
|
||||
np.zeros_like(image_ref[..., np.newaxis]),
|
||||
),
|
||||
axis=-1,
|
||||
)
|
||||
|
||||
mylogger.info("-==- DONE -==-")
|
||||
|
||||
fig, ax_main = plt.subplots()
|
||||
|
||||
display_image = compose_image(image_3color=image_3color, mask=mask)
|
||||
image_handle = ax_main.imshow(display_image, vmin=0, vmax=1, cmap="hot")
|
||||
|
||||
mylogger.info("Add controls")
|
||||
|
||||
axbutton_accept = fig.add_axes(rect=(0.3, 0.85, 0.2, 0.04))
|
||||
button_accept = Button(
|
||||
axbutton_accept = fig.add_axes(rect=(0.3, 0.85, 0.2, 0.04))
|
||||
button_accept = Button(
|
||||
ax=axbutton_accept, label="Accept", image=None, color="0.85", hovercolor="0.95"
|
||||
)
|
||||
button_accept.on_clicked(on_clicked_accept) # type: ignore
|
||||
)
|
||||
button_accept.on_clicked(on_clicked_accept) # type: ignore
|
||||
|
||||
axbutton_cancel = fig.add_axes(rect=(0.5, 0.85, 0.2, 0.04))
|
||||
button_cancel = Button(
|
||||
axbutton_cancel = fig.add_axes(rect=(0.5, 0.85, 0.2, 0.04))
|
||||
button_cancel = Button(
|
||||
ax=axbutton_cancel, label="Cancel", image=None, color="0.85", hovercolor="0.95"
|
||||
)
|
||||
button_cancel.on_clicked(on_clicked_cancel) # type: ignore
|
||||
)
|
||||
button_cancel.on_clicked(on_clicked_cancel) # type: ignore
|
||||
|
||||
axbutton_addmask = fig.add_axes(rect=(0.3, 0.9, 0.2, 0.04))
|
||||
button_addmask = Button(
|
||||
ax=axbutton_addmask, label="Add mask", image=None, color="0.85", hovercolor="0.95"
|
||||
)
|
||||
button_addmask.on_clicked(on_clicked_add) # type: ignore
|
||||
axbutton_addmask = fig.add_axes(rect=(0.3, 0.9, 0.2, 0.04))
|
||||
button_addmask = Button(
|
||||
ax=axbutton_addmask,
|
||||
label="Add mask",
|
||||
image=None,
|
||||
color="0.85",
|
||||
hovercolor="0.95",
|
||||
)
|
||||
button_addmask.on_clicked(on_clicked_add) # type: ignore
|
||||
|
||||
axbutton_removemask = fig.add_axes(rect=(0.5, 0.9, 0.2, 0.04))
|
||||
button_removemask = Button(
|
||||
axbutton_removemask = fig.add_axes(rect=(0.5, 0.9, 0.2, 0.04))
|
||||
button_removemask = Button(
|
||||
ax=axbutton_removemask,
|
||||
label="Remove mask",
|
||||
image=None,
|
||||
color="0.85",
|
||||
hovercolor="0.95",
|
||||
)
|
||||
button_removemask.on_clicked(on_clicked_remove) # type: ignore
|
||||
)
|
||||
button_removemask.on_clicked(on_clicked_remove) # type: ignore
|
||||
|
||||
# ax_main.cla()
|
||||
# ax_main.cla()
|
||||
|
||||
mylogger.info("Display")
|
||||
new_roi: RoiPoly = RoiPoly(ax=ax_main, color="r", close_fig=False, show_fig=False)
|
||||
mylogger.info("Display")
|
||||
new_roi: RoiPoly = RoiPoly(ax=ax_main, color="r", close_fig=False, show_fig=False)
|
||||
|
||||
plt.show()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
argh.dispatch_command(main)
|
||||
|
|
|
@ -20,6 +20,8 @@ from functions.gauss_smear_individual import gauss_smear_individual
|
|||
from functions.regression import regression
|
||||
from functions.data_raw_loader import data_raw_loader
|
||||
|
||||
import argh
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def process_trial(
|
||||
|
@ -889,47 +891,68 @@ def process_trial(
|
|||
return
|
||||
|
||||
|
||||
mylogger = create_logger(
|
||||
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_4"
|
||||
)
|
||||
config = load_config(mylogger=mylogger)
|
||||
def main(
|
||||
*,
|
||||
config_filename: str = "config.json",
|
||||
experiment_id_overwrite: int = -1,
|
||||
trial_id_overwrite: int = -1,
|
||||
) -> None:
|
||||
mylogger = create_logger(
|
||||
save_logging_messages=True,
|
||||
display_logging_messages=True,
|
||||
log_stage_name="stage_4",
|
||||
)
|
||||
|
||||
if (config["save_as_python"] is False) and (config["save_as_matlab"] is False):
|
||||
config = load_config(mylogger=mylogger, filename=config_filename)
|
||||
|
||||
if (config["save_as_python"] is False) and (config["save_as_matlab"] is False):
|
||||
mylogger.info("No output will be created. ")
|
||||
mylogger.info("Change save_as_python and/or save_as_matlab in the config file")
|
||||
mylogger.info("ERROR: STOP!!!")
|
||||
exit()
|
||||
|
||||
if (len(config["target_camera_donor"]) == 0) and (
|
||||
if (len(config["target_camera_donor"]) == 0) and (
|
||||
len(config["target_camera_acceptor"]) == 0
|
||||
):
|
||||
):
|
||||
mylogger.info(
|
||||
"Configure at least target_camera_donor or target_camera_acceptor correctly."
|
||||
)
|
||||
mylogger.info("ERROR: STOP!!!")
|
||||
exit()
|
||||
|
||||
device = get_torch_device(mylogger, config["force_to_cpu"])
|
||||
device = get_torch_device(mylogger, config["force_to_cpu"])
|
||||
|
||||
mylogger.info(f"Create directory {config['export_path']} in the case it does not exist")
|
||||
os.makedirs(config["export_path"], exist_ok=True)
|
||||
mylogger.info(
|
||||
f"Create directory {config['export_path']} in the case it does not exist"
|
||||
)
|
||||
os.makedirs(config["export_path"], exist_ok=True)
|
||||
|
||||
raw_data_path: str = os.path.join(
|
||||
raw_data_path: str = os.path.join(
|
||||
config["basic_path"],
|
||||
config["recoding_data"],
|
||||
config["mouse_identifier"],
|
||||
config["raw_path"],
|
||||
)
|
||||
)
|
||||
|
||||
if os.path.isdir(raw_data_path) is False:
|
||||
if os.path.isdir(raw_data_path) is False:
|
||||
mylogger.info(f"ERROR: could not find raw directory {raw_data_path}!!!!")
|
||||
exit()
|
||||
|
||||
experiments = get_experiments(raw_data_path)
|
||||
if experiment_id_overwrite == -1:
|
||||
experiments = get_experiments(raw_data_path)
|
||||
else:
|
||||
assert experiment_id_overwrite >= 0
|
||||
experiments = torch.tensor([experiment_id_overwrite])
|
||||
|
||||
for experiment_counter in range(0, experiments.shape[0]):
|
||||
for experiment_counter in range(0, experiments.shape[0]):
|
||||
experiment_id = int(experiments[experiment_counter])
|
||||
|
||||
if trial_id_overwrite == -1:
|
||||
trials = get_trials(raw_data_path, experiment_id)
|
||||
else:
|
||||
assert trial_id_overwrite >= 0
|
||||
trials = torch.tensor([trial_id_overwrite])
|
||||
|
||||
for trial_counter in range(0, trials.shape[0]):
|
||||
trial_id = int(trials[trial_counter])
|
||||
|
||||
|
@ -957,3 +980,7 @@ for experiment_counter in range(0, experiments.shape[0]):
|
|||
trial_id=trial_id,
|
||||
device=torch.device("cpu"),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
argh.dispatch_command(main)
|
||||
|
|
Loading…
Reference in a new issue