Update README.md
This commit is contained in:
parent
c9d4acd7a3
commit
421849dd4c
1 changed files with 24 additions and 21 deletions
45
README.md
45
README.md
|
@ -45,7 +45,7 @@ For installing torch under Windows see here: https://pytorch.org/get-started/loc
|
|||
- acceptor time series and donor reference image
|
||||
- move inter timeseries
|
||||
- acceptor time series and donor reference image
|
||||
- spatial pooling (i.e. 2d average pooling layer)
|
||||
- spatial pooling (i.e. 2d average pooling layer; optional)
|
||||
- acceptor(x,y,t) = acceptor(x,y,t) / acceptor(x,y,t).mean(t) + 1
|
||||
- donor(x,y,t) = donor(x,y,t) / donor(x,y,t).mean(t) + 1
|
||||
- remove the heart beat via SVD from donor and acceptor
|
||||
|
@ -68,6 +68,8 @@ For installing torch under Windows see here: https://pytorch.org/get-started/loc
|
|||
- heartbeat_scale_a = torch.sqrt(scale)
|
||||
- heartbeat_scale_d = 1.0 / (heartbeat_scale_a + 1e-20)
|
||||
- result(x,y,t) = 1.0 + result_a(x,y,t) - result_d(x,y,t)
|
||||
- gauss blur (optional)
|
||||
- spatial binning (optional)
|
||||
- update inital mask (optional)
|
||||
- end automatic_load
|
||||
|
||||
|
@ -91,7 +93,7 @@ For installing torch under Windows see here: https://pytorch.org/get-started/loc
|
|||
- acceptor time series and donor reference image; transformation also used on volume
|
||||
- move inter timeseries
|
||||
- acceptor time series and donor reference image; transformation also used on volume
|
||||
- spatial pooling (i.e. 2d average pooling layer)
|
||||
- spatial pooling (i.e. 2d average pooling layer; optional)
|
||||
- acceptor(x,y,t) = acceptor(x,y,t) / acceptor(x,y,t).mean(t) + 1
|
||||
- donor(x,y,t) = donor(x,y,t) / donor(x,y,t).mean(t) + 1
|
||||
- oxygenation(x,y,t) = oxygenation(x,y,t) / oxygenation(x,y,t).mean(t) + 1
|
||||
|
@ -108,6 +110,8 @@ For installing torch under Windows see here: https://pytorch.org/get-started/loc
|
|||
- heartbeat_scale_a = torch.sqrt(scale)
|
||||
- heartbeat_scale_d = 1.0 / (heartbeat_scale_a + 1e-20)
|
||||
- result(x,y,t) = 1.0 + result_a(x,y,t) - result_d(x,y,t)
|
||||
- gauss blur (optional)
|
||||
- spatial binning (optional)
|
||||
- end automatic_load
|
||||
|
||||
## DataContailer.py
|
||||
|
@ -116,42 +120,41 @@ For installing torch under Windows see here: https://pytorch.org/get-started/loc
|
|||
|
||||
def __init__(
|
||||
self,
|
||||
path: str,
|
||||
device: torch.device,
|
||||
display_logging_messages: bool = False,
|
||||
save_logging_messages: bool = False,
|
||||
path: str, # Path to the raw data
|
||||
device: torch.device, # e.g. torch.device("cpu") or torch.device("cuda:0")
|
||||
display_logging_messages: bool = False, # displays log messages on screen
|
||||
save_logging_messages: bool = False, # writes log messages into a log file
|
||||
) -> None:
|
||||
|
||||
### automatic_load
|
||||
def automatic_load(
|
||||
self,
|
||||
experiment_id: int = 1,
|
||||
trial_id: int = 1,
|
||||
start_position: int = 0,
|
||||
start_position_coefficients: int = 100,
|
||||
fs: float = 100.0,
|
||||
use_regression: bool | None = False,
|
||||
experiment_id: int = 1, # number of experiment
|
||||
trial_id: int = 1, # number of the trial
|
||||
start_position: int = 0, # number of frames cut away from the beginning of the time series
|
||||
start_position_coefficients: int = 100, # number of frames ignored for calculating scaling factors and such
|
||||
fs: float = 100.0, # sampling rate in Hz
|
||||
use_regression: bool | None = None,
|
||||
# Heartbeat
|
||||
remove_heartbeat: bool = True, # i.e. use SVD
|
||||
low_frequency: float = 5, # Hz Butter Bandpass Heartbeat
|
||||
high_frequency: float = 15, # Hz Butter Bandpass Heartbeat
|
||||
threshold: float | None = 0.5, # For the mask
|
||||
# Extra exposed parameters:
|
||||
align: bool = True,
|
||||
align: bool = True, # align the time series after loading them
|
||||
iterations: int = 1, # SVD iterations: Do not touch! Keep at 1
|
||||
lowrank_method: bool = True,
|
||||
lowrank_q: int = 6,
|
||||
remove_heartbeat_mean: bool = False,
|
||||
remove_heartbeat_linear: bool = False,
|
||||
bin_size: int = 4,
|
||||
lowrank_method: bool = True, # saves computational time if we know that we don't need all SVD values
|
||||
lowrank_q: int = 6, # parameter for the low rank method. need to be at least 2-3x larger than the number of SVD values we want
|
||||
remove_heartbeat_mean: bool = False, # allows us to remove a offset from the SVD heart signals (don't need that because of a bandpass filter)
|
||||
remove_heartbeat_linear: bool = False, # allows us to remove a linear treand from the SVD heart signals (don't need that because of a bandpass filter)
|
||||
bin_size: int = 4, # size of the kernel of the first 2d average pooling layer
|
||||
do_frame_shift: bool = True,
|
||||
half_width_frequency_window: float = 3.0, # Hz (on side ) measure_heartbeat_frequency
|
||||
mmap_mode: bool = True,
|
||||
mmap_mode: bool = True, # controls the np.load
|
||||
initital_mask_name: str | None = None,
|
||||
initital_mask_update: bool = True,
|
||||
initital_mask_roi: bool = False,
|
||||
gaussian_blur_kernel_size: int | None = 3,
|
||||
gaussian_blur_sigma: float = 1.0,
|
||||
bin_size_post: int | None = None,
|
||||
calculate_amplitude: bool = False,
|
||||
bin_size_post: int | None = None, # size of the kernel of the second 2d average pooling layer
|
||||
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
||||
|
|
Loading…
Reference in a new issue