Add files via upload

This commit is contained in:
David Rotermund 2024-02-28 15:16:16 +01:00 committed by GitHub
parent 861fd31620
commit 51f32998a5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 53 additions and 112 deletions

View file

@ -1,7 +1,10 @@
{ {
"basic_path": "/data_1/robert", "basic_path": "/data_1/hendrik",
"recoding_data": "2021-10-05", "recoding_data": "2021-06-17",
"mouse_identifier": "M3879M", "mouse_identifier": "M3859M",
//"basic_path": "/data_1/robert",
//"recoding_data": "2021-10-05",
//"mouse_identifier": "M3879M",
"raw_path": "raw", "raw_path": "raw",
"export_path": "output", "export_path": "output",
"ref_image_path": "ref_images", "ref_image_path": "ref_images",

View file

@ -5,12 +5,11 @@ import numpy as np
from functions.get_experiments import get_experiments from functions.get_experiments import get_experiments
from functions.get_trials import get_trials from functions.get_trials import get_trials
from functions.get_parts import get_parts
from functions.bandpass import bandpass from functions.bandpass import bandpass
from functions.create_logger import create_logger from functions.create_logger import create_logger
from functions.load_meta_data import load_meta_data
from functions.get_torch_device import get_torch_device from functions.get_torch_device import get_torch_device
from functions.load_config import load_config from functions.load_config import load_config
from functions.data_raw_loader import data_raw_loader
mylogger = create_logger( mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_1" save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_1"
@ -18,8 +17,12 @@ mylogger = create_logger(
config = load_config(mylogger=mylogger) config = load_config(mylogger=mylogger)
if config["binning_enable"] and (config["binning_at_the_end"] is False):
device: torch.device = torch.device("cpu")
else:
device = get_torch_device(mylogger, config["force_to_cpu"]) device = get_torch_device(mylogger, config["force_to_cpu"])
dtype_str: str = config["dtype"] dtype_str: str = config["dtype"]
dtype: torch.dtype = getattr(torch, dtype_str) dtype: torch.dtype = getattr(torch, dtype_str)
@ -34,23 +37,6 @@ mylogger.info(f"Using data path: {raw_data_path}")
first_experiment_id: int = int(get_experiments(raw_data_path).min()) first_experiment_id: int = int(get_experiments(raw_data_path).min())
first_trial_id: int = int(get_trials(raw_data_path, first_experiment_id).min()) first_trial_id: int = int(get_trials(raw_data_path, first_experiment_id).min())
first_part_id: int = int(
get_parts(raw_data_path, first_experiment_id, first_trial_id).min()
)
filename_data: str = os.path.join(
raw_data_path,
f"Exp{first_experiment_id:03d}_Trial{first_trial_id:03d}_Part{first_part_id:03d}.npy",
)
mylogger.info(f"Will use: {filename_data} for data")
filename_meta: str = os.path.join(
raw_data_path,
f"Exp{first_experiment_id:03d}_Trial{first_trial_id:03d}_Part{first_part_id:03d}_meta.txt",
)
mylogger.info(f"Will use: {filename_meta} for meta data")
meta_channels: list[str] meta_channels: list[str]
meta_mouse_markings: str meta_mouse_markings: str
@ -60,6 +46,14 @@ meta_experiment_names: dict
meta_trial_recording_duration: float meta_trial_recording_duration: float
meta_frame_time: float meta_frame_time: float
meta_mouse: str meta_mouse: str
data: torch.Tensor
if config["binning_enable"] and (config["binning_at_the_end"] is False):
force_to_cpu_memory: bool = True
else:
force_to_cpu_memory = False
mylogger.info("Loading data")
( (
meta_channels, meta_channels,
@ -70,15 +64,15 @@ meta_mouse: str
meta_trial_recording_duration, meta_trial_recording_duration,
meta_frame_time, meta_frame_time,
meta_mouse, meta_mouse,
) = load_meta_data(mylogger=mylogger, filename_meta=filename_meta) data,
) = data_raw_loader(
raw_data_path=raw_data_path,
dtype_str = config["dtype"] mylogger=mylogger,
dtype_np: np.dtype = getattr(np, dtype_str) experiment_id=first_experiment_id,
trial_id=first_trial_id,
mylogger.info("Loading data") device=device,
data = torch.tensor( force_to_cpu_memory=force_to_cpu_memory,
np.load(filename_data).astype(dtype_np), dtype=dtype, device=torch.device("cpu") config=config,
) )
mylogger.info("-==- Done -==-") mylogger.info("-==- Done -==-")

View file

@ -6,7 +6,7 @@ import matplotlib
from matplotlib.widgets import Button # type:ignore from matplotlib.widgets import Button # type:ignore
# pip install roipoly # pip install roipoly
from roipoly import RoiPoly from roipoly import RoiPoly # type:ignore
from functions.create_logger import create_logger from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device from functions.get_torch_device import get_torch_device

View file

@ -1,6 +1,3 @@
# TODO: I am only processing trials with one part
# The latter one is no real problem. I just need an example...
import numpy as np import numpy as np
import torch import torch
import torchvision as tv # type: ignore import torchvision as tv # type: ignore
@ -12,10 +9,8 @@ import h5py # type: ignore
from functions.create_logger import create_logger from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device from functions.get_torch_device import get_torch_device
from functions.load_config import load_config from functions.load_config import load_config
from functions.load_meta_data import load_meta_data
from functions.get_experiments import get_experiments from functions.get_experiments import get_experiments
from functions.get_trials import get_trials from functions.get_trials import get_trials
from functions.get_parts import get_parts
from functions.binning import binning from functions.binning import binning
from functions.ImageAlignment import ImageAlignment from functions.ImageAlignment import ImageAlignment
from functions.align_refref import align_refref from functions.align_refref import align_refref
@ -24,6 +19,7 @@ from functions.perform_donor_volume_translation import perform_donor_volume_tran
from functions.bandpass import bandpass from functions.bandpass import bandpass
from functions.gauss_smear_individual import gauss_smear_individual from functions.gauss_smear_individual import gauss_smear_individual
from functions.regression import regression from functions.regression import regression
from functions.data_raw_loader import data_raw_loader
@torch.no_grad() @torch.no_grad()
@ -57,46 +53,10 @@ def process_trial(
config["raw_path"], config["raw_path"],
) )
if os.path.isdir(raw_data_path) is False: if config["binning_enable"] and (config["binning_at_the_end"] is False):
mylogger.info(f"ERROR: could not find raw directory {raw_data_path}!!!!") force_to_cpu_memory: bool = True
return else:
force_to_cpu_memory = False
if (torch.where(get_experiments(raw_data_path) == experiment_id)[0].shape[0]) != 1:
mylogger.info(f"ERROR: could not find experiment id {experiment_id}!!!!")
return
if (
torch.where(get_trials(raw_data_path, experiment_id) == trial_id)[0].shape[0]
) != 1:
mylogger.info(f"ERROR: could not find trial id {trial_id}!!!!")
return
if get_parts(raw_data_path, experiment_id, trial_id).shape[0] != 1:
mylogger.info("ERROR: this has more than one part. NOT IMPLEMENTED YET!!!!")
assert get_parts(raw_data_path, experiment_id, trial_id).shape[0] == 1
part_id: int = 1
experiment_name = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
mylogger.info(f"Will work on: {experiment_name}")
filename_data: str = os.path.join(
raw_data_path,
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}.npy",
)
mylogger.info(f"Will use: {filename_data} for data")
filename_meta: str = os.path.join(
raw_data_path,
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}_meta.txt",
)
mylogger.info(f"Will use: {filename_meta} for meta data")
if os.path.isfile(filename_meta) is False:
mylogger.info(f"Could not load meta data... {filename_meta}")
mylogger.info(f"ERROR: skipping {experiment_name}!!!!")
return
meta_channels: list[str] meta_channels: list[str]
meta_mouse_markings: str meta_mouse_markings: str
@ -106,6 +66,7 @@ def process_trial(
meta_trial_recording_duration: float meta_trial_recording_duration: float
meta_frame_time: float meta_frame_time: float
meta_mouse: str meta_mouse: str
data: torch.Tensor
( (
meta_channels, meta_channels,
@ -116,43 +77,22 @@ def process_trial(
meta_trial_recording_duration, meta_trial_recording_duration,
meta_frame_time, meta_frame_time,
meta_mouse, meta_mouse,
) = load_meta_data(mylogger=mylogger, filename_meta=filename_meta) data,
) = data_raw_loader(
raw_data_path=raw_data_path,
mylogger=mylogger,
experiment_id=experiment_id,
trial_id=trial_id,
device=device,
force_to_cpu_memory=force_to_cpu_memory,
config=config,
)
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
dtype_str = config["dtype"] dtype_str = config["dtype"]
mylogger.info(f"Data precision will be {dtype_str}")
dtype: torch.dtype = getattr(torch, dtype_str)
dtype_np: np.dtype = getattr(np, dtype_str) dtype_np: np.dtype = getattr(np, dtype_str)
mylogger.info("Loading raw data") dtype: torch.dtype = data.dtype
if device != torch.device("cpu"):
free_mem: int = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
data_np: np.ndarray = np.load(filename_data, mmap_mode="r").astype(dtype_np)
if config["binning_enable"] and (config["binning_at_the_end"] is False):
data: torch.Tensor = torch.zeros(
data_np.shape, dtype=dtype, device=torch.device("cpu")
)
for i in range(0, len(config["required_order"])):
mylogger.info(
f"Move raw data to PyTorch CPU device: {config['required_order'][i]}"
)
idx = meta_channels.index(config["required_order"][i])
data[..., i] = torch.tensor(
data_np[..., idx], dtype=dtype, device=torch.device("cpu")
)
else:
data = torch.zeros(data_np.shape, dtype=dtype, device=device)
for i in range(0, len(config["required_order"])):
mylogger.info(
f"Move raw data to PyTorch device: {config['required_order'][i]}"
)
idx = meta_channels.index(config["required_order"][i])
data[..., i] = torch.tensor(data_np[..., idx], dtype=dtype, device=device)
if device != torch.device("cpu"): if device != torch.device("cpu"):
free_mem = cuda_total_memory - max( free_mem = cuda_total_memory - max(
@ -160,7 +100,6 @@ def process_trial(
) )
mylogger.info(f"CUDA memory: {free_mem//1024} MByte") mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
del data_np
mylogger.info(f"Data shape: {data.shape}") mylogger.info(f"Data shape: {data.shape}")
mylogger.info("-==- Done -==-") mylogger.info("-==- Done -==-")
@ -183,6 +122,7 @@ def process_trial(
ref_image_path_acceptor: str = os.path.join(ref_image_path, "acceptor.npy") ref_image_path_acceptor: str = os.path.join(ref_image_path, "acceptor.npy")
if os.path.isfile(ref_image_path_acceptor) is False: if os.path.isfile(ref_image_path_acceptor) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_acceptor}") mylogger.info(f"Could not load ref file: {ref_image_path_acceptor}")
assert os.path.isfile(ref_image_path_acceptor)
return return
mylogger.info(f"Loading ref file data: {ref_image_path_acceptor}") mylogger.info(f"Loading ref file data: {ref_image_path_acceptor}")
@ -193,6 +133,7 @@ def process_trial(
ref_image_path_donor: str = os.path.join(ref_image_path, "donor.npy") ref_image_path_donor: str = os.path.join(ref_image_path, "donor.npy")
if os.path.isfile(ref_image_path_donor) is False: if os.path.isfile(ref_image_path_donor) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_donor}") mylogger.info(f"Could not load ref file: {ref_image_path_donor}")
assert os.path.isfile(ref_image_path_donor)
return return
mylogger.info(f"Loading ref file data: {ref_image_path_donor}") mylogger.info(f"Loading ref file data: {ref_image_path_donor}")
@ -203,6 +144,7 @@ def process_trial(
ref_image_path_oxygenation: str = os.path.join(ref_image_path, "oxygenation.npy") ref_image_path_oxygenation: str = os.path.join(ref_image_path, "oxygenation.npy")
if os.path.isfile(ref_image_path_oxygenation) is False: if os.path.isfile(ref_image_path_oxygenation) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_oxygenation}") mylogger.info(f"Could not load ref file: {ref_image_path_oxygenation}")
assert os.path.isfile(ref_image_path_oxygenation)
return return
mylogger.info(f"Loading ref file data: {ref_image_path_oxygenation}") mylogger.info(f"Loading ref file data: {ref_image_path_oxygenation}")
@ -213,6 +155,7 @@ def process_trial(
ref_image_path_volume: str = os.path.join(ref_image_path, "volume.npy") ref_image_path_volume: str = os.path.join(ref_image_path, "volume.npy")
if os.path.isfile(ref_image_path_volume) is False: if os.path.isfile(ref_image_path_volume) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_volume}") mylogger.info(f"Could not load ref file: {ref_image_path_volume}")
assert os.path.isfile(ref_image_path_volume)
return return
mylogger.info(f"Loading ref file data: {ref_image_path_volume}") mylogger.info(f"Loading ref file data: {ref_image_path_volume}")
@ -223,6 +166,7 @@ def process_trial(
refined_mask_file: str = os.path.join(ref_image_path, "mask_not_rotated.npy") refined_mask_file: str = os.path.join(ref_image_path, "mask_not_rotated.npy")
if os.path.isfile(refined_mask_file) is False: if os.path.isfile(refined_mask_file) is False:
mylogger.info(f"Could not load mask file: {refined_mask_file}") mylogger.info(f"Could not load mask file: {refined_mask_file}")
assert os.path.isfile(refined_mask_file)
return return
mylogger.info(f"Loading mask file data: {refined_mask_file}") mylogger.info(f"Loading mask file data: {refined_mask_file}")