Add files via upload
This commit is contained in:
parent
861fd31620
commit
51f32998a5
4 changed files with 53 additions and 112 deletions
|
@ -1,7 +1,10 @@
|
||||||
{
|
{
|
||||||
"basic_path": "/data_1/robert",
|
"basic_path": "/data_1/hendrik",
|
||||||
"recoding_data": "2021-10-05",
|
"recoding_data": "2021-06-17",
|
||||||
"mouse_identifier": "M3879M",
|
"mouse_identifier": "M3859M",
|
||||||
|
//"basic_path": "/data_1/robert",
|
||||||
|
//"recoding_data": "2021-10-05",
|
||||||
|
//"mouse_identifier": "M3879M",
|
||||||
"raw_path": "raw",
|
"raw_path": "raw",
|
||||||
"export_path": "output",
|
"export_path": "output",
|
||||||
"ref_image_path": "ref_images",
|
"ref_image_path": "ref_images",
|
||||||
|
|
|
@ -5,12 +5,11 @@ import numpy as np
|
||||||
|
|
||||||
from functions.get_experiments import get_experiments
|
from functions.get_experiments import get_experiments
|
||||||
from functions.get_trials import get_trials
|
from functions.get_trials import get_trials
|
||||||
from functions.get_parts import get_parts
|
|
||||||
from functions.bandpass import bandpass
|
from functions.bandpass import bandpass
|
||||||
from functions.create_logger import create_logger
|
from functions.create_logger import create_logger
|
||||||
from functions.load_meta_data import load_meta_data
|
|
||||||
from functions.get_torch_device import get_torch_device
|
from functions.get_torch_device import get_torch_device
|
||||||
from functions.load_config import load_config
|
from functions.load_config import load_config
|
||||||
|
from functions.data_raw_loader import data_raw_loader
|
||||||
|
|
||||||
mylogger = create_logger(
|
mylogger = create_logger(
|
||||||
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_1"
|
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_1"
|
||||||
|
@ -18,7 +17,11 @@ mylogger = create_logger(
|
||||||
|
|
||||||
config = load_config(mylogger=mylogger)
|
config = load_config(mylogger=mylogger)
|
||||||
|
|
||||||
device = get_torch_device(mylogger, config["force_to_cpu"])
|
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
||||||
|
device: torch.device = torch.device("cpu")
|
||||||
|
else:
|
||||||
|
device = get_torch_device(mylogger, config["force_to_cpu"])
|
||||||
|
|
||||||
|
|
||||||
dtype_str: str = config["dtype"]
|
dtype_str: str = config["dtype"]
|
||||||
dtype: torch.dtype = getattr(torch, dtype_str)
|
dtype: torch.dtype = getattr(torch, dtype_str)
|
||||||
|
@ -34,23 +37,6 @@ mylogger.info(f"Using data path: {raw_data_path}")
|
||||||
|
|
||||||
first_experiment_id: int = int(get_experiments(raw_data_path).min())
|
first_experiment_id: int = int(get_experiments(raw_data_path).min())
|
||||||
first_trial_id: int = int(get_trials(raw_data_path, first_experiment_id).min())
|
first_trial_id: int = int(get_trials(raw_data_path, first_experiment_id).min())
|
||||||
first_part_id: int = int(
|
|
||||||
get_parts(raw_data_path, first_experiment_id, first_trial_id).min()
|
|
||||||
)
|
|
||||||
|
|
||||||
filename_data: str = os.path.join(
|
|
||||||
raw_data_path,
|
|
||||||
f"Exp{first_experiment_id:03d}_Trial{first_trial_id:03d}_Part{first_part_id:03d}.npy",
|
|
||||||
)
|
|
||||||
|
|
||||||
mylogger.info(f"Will use: {filename_data} for data")
|
|
||||||
|
|
||||||
filename_meta: str = os.path.join(
|
|
||||||
raw_data_path,
|
|
||||||
f"Exp{first_experiment_id:03d}_Trial{first_trial_id:03d}_Part{first_part_id:03d}_meta.txt",
|
|
||||||
)
|
|
||||||
|
|
||||||
mylogger.info(f"Will use: {filename_meta} for meta data")
|
|
||||||
|
|
||||||
meta_channels: list[str]
|
meta_channels: list[str]
|
||||||
meta_mouse_markings: str
|
meta_mouse_markings: str
|
||||||
|
@ -60,6 +46,14 @@ meta_experiment_names: dict
|
||||||
meta_trial_recording_duration: float
|
meta_trial_recording_duration: float
|
||||||
meta_frame_time: float
|
meta_frame_time: float
|
||||||
meta_mouse: str
|
meta_mouse: str
|
||||||
|
data: torch.Tensor
|
||||||
|
|
||||||
|
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
||||||
|
force_to_cpu_memory: bool = True
|
||||||
|
else:
|
||||||
|
force_to_cpu_memory = False
|
||||||
|
|
||||||
|
mylogger.info("Loading data")
|
||||||
|
|
||||||
(
|
(
|
||||||
meta_channels,
|
meta_channels,
|
||||||
|
@ -70,15 +64,15 @@ meta_mouse: str
|
||||||
meta_trial_recording_duration,
|
meta_trial_recording_duration,
|
||||||
meta_frame_time,
|
meta_frame_time,
|
||||||
meta_mouse,
|
meta_mouse,
|
||||||
) = load_meta_data(mylogger=mylogger, filename_meta=filename_meta)
|
data,
|
||||||
|
) = data_raw_loader(
|
||||||
|
raw_data_path=raw_data_path,
|
||||||
dtype_str = config["dtype"]
|
mylogger=mylogger,
|
||||||
dtype_np: np.dtype = getattr(np, dtype_str)
|
experiment_id=first_experiment_id,
|
||||||
|
trial_id=first_trial_id,
|
||||||
mylogger.info("Loading data")
|
device=device,
|
||||||
data = torch.tensor(
|
force_to_cpu_memory=force_to_cpu_memory,
|
||||||
np.load(filename_data).astype(dtype_np), dtype=dtype, device=torch.device("cpu")
|
config=config,
|
||||||
)
|
)
|
||||||
mylogger.info("-==- Done -==-")
|
mylogger.info("-==- Done -==-")
|
||||||
|
|
||||||
|
|
|
@ -6,7 +6,7 @@ import matplotlib
|
||||||
from matplotlib.widgets import Button # type:ignore
|
from matplotlib.widgets import Button # type:ignore
|
||||||
|
|
||||||
# pip install roipoly
|
# pip install roipoly
|
||||||
from roipoly import RoiPoly
|
from roipoly import RoiPoly # type:ignore
|
||||||
|
|
||||||
from functions.create_logger import create_logger
|
from functions.create_logger import create_logger
|
||||||
from functions.get_torch_device import get_torch_device
|
from functions.get_torch_device import get_torch_device
|
||||||
|
|
|
@ -1,6 +1,3 @@
|
||||||
# TODO: I am only processing trials with one part
|
|
||||||
# The latter one is no real problem. I just need an example...
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
import torchvision as tv # type: ignore
|
import torchvision as tv # type: ignore
|
||||||
|
@ -12,10 +9,8 @@ import h5py # type: ignore
|
||||||
from functions.create_logger import create_logger
|
from functions.create_logger import create_logger
|
||||||
from functions.get_torch_device import get_torch_device
|
from functions.get_torch_device import get_torch_device
|
||||||
from functions.load_config import load_config
|
from functions.load_config import load_config
|
||||||
from functions.load_meta_data import load_meta_data
|
|
||||||
from functions.get_experiments import get_experiments
|
from functions.get_experiments import get_experiments
|
||||||
from functions.get_trials import get_trials
|
from functions.get_trials import get_trials
|
||||||
from functions.get_parts import get_parts
|
|
||||||
from functions.binning import binning
|
from functions.binning import binning
|
||||||
from functions.ImageAlignment import ImageAlignment
|
from functions.ImageAlignment import ImageAlignment
|
||||||
from functions.align_refref import align_refref
|
from functions.align_refref import align_refref
|
||||||
|
@ -24,6 +19,7 @@ from functions.perform_donor_volume_translation import perform_donor_volume_tran
|
||||||
from functions.bandpass import bandpass
|
from functions.bandpass import bandpass
|
||||||
from functions.gauss_smear_individual import gauss_smear_individual
|
from functions.gauss_smear_individual import gauss_smear_individual
|
||||||
from functions.regression import regression
|
from functions.regression import regression
|
||||||
|
from functions.data_raw_loader import data_raw_loader
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
|
@ -57,46 +53,10 @@ def process_trial(
|
||||||
config["raw_path"],
|
config["raw_path"],
|
||||||
)
|
)
|
||||||
|
|
||||||
if os.path.isdir(raw_data_path) is False:
|
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
||||||
mylogger.info(f"ERROR: could not find raw directory {raw_data_path}!!!!")
|
force_to_cpu_memory: bool = True
|
||||||
return
|
else:
|
||||||
|
force_to_cpu_memory = False
|
||||||
if (torch.where(get_experiments(raw_data_path) == experiment_id)[0].shape[0]) != 1:
|
|
||||||
mylogger.info(f"ERROR: could not find experiment id {experiment_id}!!!!")
|
|
||||||
return
|
|
||||||
|
|
||||||
if (
|
|
||||||
torch.where(get_trials(raw_data_path, experiment_id) == trial_id)[0].shape[0]
|
|
||||||
) != 1:
|
|
||||||
mylogger.info(f"ERROR: could not find trial id {trial_id}!!!!")
|
|
||||||
return
|
|
||||||
|
|
||||||
if get_parts(raw_data_path, experiment_id, trial_id).shape[0] != 1:
|
|
||||||
mylogger.info("ERROR: this has more than one part. NOT IMPLEMENTED YET!!!!")
|
|
||||||
assert get_parts(raw_data_path, experiment_id, trial_id).shape[0] == 1
|
|
||||||
part_id: int = 1
|
|
||||||
|
|
||||||
experiment_name = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
|
|
||||||
mylogger.info(f"Will work on: {experiment_name}")
|
|
||||||
|
|
||||||
filename_data: str = os.path.join(
|
|
||||||
raw_data_path,
|
|
||||||
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}.npy",
|
|
||||||
)
|
|
||||||
|
|
||||||
mylogger.info(f"Will use: {filename_data} for data")
|
|
||||||
|
|
||||||
filename_meta: str = os.path.join(
|
|
||||||
raw_data_path,
|
|
||||||
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}_meta.txt",
|
|
||||||
)
|
|
||||||
|
|
||||||
mylogger.info(f"Will use: {filename_meta} for meta data")
|
|
||||||
|
|
||||||
if os.path.isfile(filename_meta) is False:
|
|
||||||
mylogger.info(f"Could not load meta data... {filename_meta}")
|
|
||||||
mylogger.info(f"ERROR: skipping {experiment_name}!!!!")
|
|
||||||
return
|
|
||||||
|
|
||||||
meta_channels: list[str]
|
meta_channels: list[str]
|
||||||
meta_mouse_markings: str
|
meta_mouse_markings: str
|
||||||
|
@ -106,6 +66,7 @@ def process_trial(
|
||||||
meta_trial_recording_duration: float
|
meta_trial_recording_duration: float
|
||||||
meta_frame_time: float
|
meta_frame_time: float
|
||||||
meta_mouse: str
|
meta_mouse: str
|
||||||
|
data: torch.Tensor
|
||||||
|
|
||||||
(
|
(
|
||||||
meta_channels,
|
meta_channels,
|
||||||
|
@ -116,43 +77,22 @@ def process_trial(
|
||||||
meta_trial_recording_duration,
|
meta_trial_recording_duration,
|
||||||
meta_frame_time,
|
meta_frame_time,
|
||||||
meta_mouse,
|
meta_mouse,
|
||||||
) = load_meta_data(mylogger=mylogger, filename_meta=filename_meta)
|
data,
|
||||||
|
) = data_raw_loader(
|
||||||
|
raw_data_path=raw_data_path,
|
||||||
|
mylogger=mylogger,
|
||||||
|
experiment_id=experiment_id,
|
||||||
|
trial_id=trial_id,
|
||||||
|
device=device,
|
||||||
|
force_to_cpu_memory=force_to_cpu_memory,
|
||||||
|
config=config,
|
||||||
|
)
|
||||||
|
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
|
||||||
|
|
||||||
dtype_str = config["dtype"]
|
dtype_str = config["dtype"]
|
||||||
mylogger.info(f"Data precision will be {dtype_str}")
|
|
||||||
dtype: torch.dtype = getattr(torch, dtype_str)
|
|
||||||
dtype_np: np.dtype = getattr(np, dtype_str)
|
dtype_np: np.dtype = getattr(np, dtype_str)
|
||||||
|
|
||||||
mylogger.info("Loading raw data")
|
dtype: torch.dtype = data.dtype
|
||||||
|
|
||||||
if device != torch.device("cpu"):
|
|
||||||
free_mem: int = cuda_total_memory - max(
|
|
||||||
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
|
|
||||||
)
|
|
||||||
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
|
|
||||||
|
|
||||||
data_np: np.ndarray = np.load(filename_data, mmap_mode="r").astype(dtype_np)
|
|
||||||
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
|
||||||
|
|
||||||
data: torch.Tensor = torch.zeros(
|
|
||||||
data_np.shape, dtype=dtype, device=torch.device("cpu")
|
|
||||||
)
|
|
||||||
for i in range(0, len(config["required_order"])):
|
|
||||||
mylogger.info(
|
|
||||||
f"Move raw data to PyTorch CPU device: {config['required_order'][i]}"
|
|
||||||
)
|
|
||||||
idx = meta_channels.index(config["required_order"][i])
|
|
||||||
data[..., i] = torch.tensor(
|
|
||||||
data_np[..., idx], dtype=dtype, device=torch.device("cpu")
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
data = torch.zeros(data_np.shape, dtype=dtype, device=device)
|
|
||||||
for i in range(0, len(config["required_order"])):
|
|
||||||
mylogger.info(
|
|
||||||
f"Move raw data to PyTorch device: {config['required_order'][i]}"
|
|
||||||
)
|
|
||||||
idx = meta_channels.index(config["required_order"][i])
|
|
||||||
data[..., i] = torch.tensor(data_np[..., idx], dtype=dtype, device=device)
|
|
||||||
|
|
||||||
if device != torch.device("cpu"):
|
if device != torch.device("cpu"):
|
||||||
free_mem = cuda_total_memory - max(
|
free_mem = cuda_total_memory - max(
|
||||||
|
@ -160,7 +100,6 @@ def process_trial(
|
||||||
)
|
)
|
||||||
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
|
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
|
||||||
|
|
||||||
del data_np
|
|
||||||
mylogger.info(f"Data shape: {data.shape}")
|
mylogger.info(f"Data shape: {data.shape}")
|
||||||
mylogger.info("-==- Done -==-")
|
mylogger.info("-==- Done -==-")
|
||||||
|
|
||||||
|
@ -183,6 +122,7 @@ def process_trial(
|
||||||
ref_image_path_acceptor: str = os.path.join(ref_image_path, "acceptor.npy")
|
ref_image_path_acceptor: str = os.path.join(ref_image_path, "acceptor.npy")
|
||||||
if os.path.isfile(ref_image_path_acceptor) is False:
|
if os.path.isfile(ref_image_path_acceptor) is False:
|
||||||
mylogger.info(f"Could not load ref file: {ref_image_path_acceptor}")
|
mylogger.info(f"Could not load ref file: {ref_image_path_acceptor}")
|
||||||
|
assert os.path.isfile(ref_image_path_acceptor)
|
||||||
return
|
return
|
||||||
|
|
||||||
mylogger.info(f"Loading ref file data: {ref_image_path_acceptor}")
|
mylogger.info(f"Loading ref file data: {ref_image_path_acceptor}")
|
||||||
|
@ -193,6 +133,7 @@ def process_trial(
|
||||||
ref_image_path_donor: str = os.path.join(ref_image_path, "donor.npy")
|
ref_image_path_donor: str = os.path.join(ref_image_path, "donor.npy")
|
||||||
if os.path.isfile(ref_image_path_donor) is False:
|
if os.path.isfile(ref_image_path_donor) is False:
|
||||||
mylogger.info(f"Could not load ref file: {ref_image_path_donor}")
|
mylogger.info(f"Could not load ref file: {ref_image_path_donor}")
|
||||||
|
assert os.path.isfile(ref_image_path_donor)
|
||||||
return
|
return
|
||||||
|
|
||||||
mylogger.info(f"Loading ref file data: {ref_image_path_donor}")
|
mylogger.info(f"Loading ref file data: {ref_image_path_donor}")
|
||||||
|
@ -203,6 +144,7 @@ def process_trial(
|
||||||
ref_image_path_oxygenation: str = os.path.join(ref_image_path, "oxygenation.npy")
|
ref_image_path_oxygenation: str = os.path.join(ref_image_path, "oxygenation.npy")
|
||||||
if os.path.isfile(ref_image_path_oxygenation) is False:
|
if os.path.isfile(ref_image_path_oxygenation) is False:
|
||||||
mylogger.info(f"Could not load ref file: {ref_image_path_oxygenation}")
|
mylogger.info(f"Could not load ref file: {ref_image_path_oxygenation}")
|
||||||
|
assert os.path.isfile(ref_image_path_oxygenation)
|
||||||
return
|
return
|
||||||
|
|
||||||
mylogger.info(f"Loading ref file data: {ref_image_path_oxygenation}")
|
mylogger.info(f"Loading ref file data: {ref_image_path_oxygenation}")
|
||||||
|
@ -213,6 +155,7 @@ def process_trial(
|
||||||
ref_image_path_volume: str = os.path.join(ref_image_path, "volume.npy")
|
ref_image_path_volume: str = os.path.join(ref_image_path, "volume.npy")
|
||||||
if os.path.isfile(ref_image_path_volume) is False:
|
if os.path.isfile(ref_image_path_volume) is False:
|
||||||
mylogger.info(f"Could not load ref file: {ref_image_path_volume}")
|
mylogger.info(f"Could not load ref file: {ref_image_path_volume}")
|
||||||
|
assert os.path.isfile(ref_image_path_volume)
|
||||||
return
|
return
|
||||||
|
|
||||||
mylogger.info(f"Loading ref file data: {ref_image_path_volume}")
|
mylogger.info(f"Loading ref file data: {ref_image_path_volume}")
|
||||||
|
@ -223,6 +166,7 @@ def process_trial(
|
||||||
refined_mask_file: str = os.path.join(ref_image_path, "mask_not_rotated.npy")
|
refined_mask_file: str = os.path.join(ref_image_path, "mask_not_rotated.npy")
|
||||||
if os.path.isfile(refined_mask_file) is False:
|
if os.path.isfile(refined_mask_file) is False:
|
||||||
mylogger.info(f"Could not load mask file: {refined_mask_file}")
|
mylogger.info(f"Could not load mask file: {refined_mask_file}")
|
||||||
|
assert os.path.isfile(refined_mask_file)
|
||||||
return
|
return
|
||||||
|
|
||||||
mylogger.info(f"Loading mask file data: {refined_mask_file}")
|
mylogger.info(f"Loading mask file data: {refined_mask_file}")
|
||||||
|
|
Loading…
Reference in a new issue