Delete stage_2_make_heartbeat_mask.py

This commit is contained in:
David Rotermund 2025-03-19 18:29:19 +01:00 committed by GitHub
parent 2d1772b948
commit 580a85b964
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -1,163 +0,0 @@
import matplotlib.pyplot as plt # type:ignore
import matplotlib
import numpy as np
import torch
import os
import argh
from matplotlib.widgets import Slider, Button # type:ignore
from functools import partial
from functions.gauss_smear_individual import gauss_smear_individual
from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
def main(*, config_filename: str = "config.json") -> None:
mylogger = create_logger(
save_logging_messages=True,
display_logging_messages=True,
log_stage_name="stage_2",
)
config = load_config(mylogger=mylogger, filename=config_filename)
path: str = config["ref_image_path"]
use_channel: str = "donor"
spatial_width: float = 4.0
temporal_width: float = 0.1
threshold: float = 0.05
heartbeat_mask_threshold_file: str = os.path.join(
path, "heartbeat_mask_threshold.npy"
)
if os.path.isfile(heartbeat_mask_threshold_file):
mylogger.info(
f"loading previous threshold file: {heartbeat_mask_threshold_file}"
)
threshold = float(np.load(heartbeat_mask_threshold_file)[0])
mylogger.info(f"initial threshold is {threshold}")
image_ref_file: str = os.path.join(path, use_channel + ".npy")
image_var_file: str = os.path.join(path, use_channel + "_var.npy")
heartbeat_mask_file: str = os.path.join(path, "heartbeat_mask.npy")
device = get_torch_device(mylogger, config["force_to_cpu"])
mylogger.info(f"loading image reference file: {image_ref_file}")
image_ref: np.ndarray = np.load(image_ref_file)
image_ref /= image_ref.max()
mylogger.info(f"loading image heartbeat power: {image_var_file}")
image_var: np.ndarray = np.load(image_var_file)
image_var /= image_var.max()
mylogger.info("Smear the image heartbeat power patially")
temp, _ = gauss_smear_individual(
input=torch.tensor(image_var[..., np.newaxis], device=device),
spatial_width=spatial_width,
temporal_width=temporal_width,
use_matlab_mask=False,
)
temp /= temp.max()
mylogger.info("-==- DONE -==-")
image_3color = np.concatenate(
(
np.zeros_like(image_ref[..., np.newaxis]),
image_ref[..., np.newaxis],
temp.cpu().numpy(),
),
axis=-1,
)
mylogger.info("Prepare image")
display_image = image_3color.copy()
display_image[..., 2] = display_image[..., 0]
mask = np.where(image_3color[..., 2] >= threshold, 1.0, np.nan)[..., np.newaxis]
display_image *= mask
display_image = np.nan_to_num(display_image, nan=1.0)
value_sort = np.sort(image_var.flatten())
value_sort_max = value_sort[int(value_sort.shape[0] * 0.95)] * 3
print(value_sort_max)
mylogger.info("-==- DONE -==-")
mylogger.info("Create figure")
fig: matplotlib.figure.Figure = plt.figure()
image_handle = plt.imshow(display_image, vmin=0, vmax=1, cmap="hot")
mylogger.info("Add controls")
def next_frame(
i: float, images: np.ndarray, image_handle: matplotlib.image.AxesImage
) -> None:
nonlocal threshold
threshold = i
display_image: np.ndarray = images.copy()
display_image[..., 2] = display_image[..., 0]
mask: np.ndarray = np.where(images[..., 2] >= i, 1.0, np.nan)[..., np.newaxis]
display_image *= mask
display_image = np.nan_to_num(display_image, nan=1.0)
image_handle.set_data(display_image)
return
def on_clicked_accept(event: matplotlib.backend_bases.MouseEvent) -> None:
nonlocal threshold
nonlocal image_3color
nonlocal path
nonlocal mylogger
nonlocal heartbeat_mask_file
nonlocal heartbeat_mask_threshold_file
mylogger.info(f"Threshold: {threshold}")
mask: np.ndarray = image_3color[..., 2] >= threshold
mylogger.info(f"Save mask to: {heartbeat_mask_file}")
np.save(heartbeat_mask_file, mask)
mylogger.info(f"Save threshold to: {heartbeat_mask_threshold_file}")
np.save(heartbeat_mask_threshold_file, np.array([threshold]))
exit()
def on_clicked_cancel(event: matplotlib.backend_bases.MouseEvent) -> None:
exit()
axfreq = fig.add_axes(rect=(0.4, 0.9, 0.3, 0.03))
slice_slider = Slider(
ax=axfreq,
label="Threshold",
valmin=0,
valmax=value_sort_max,
valinit=threshold,
valstep=value_sort_max / 1000.0,
)
axbutton_accept = fig.add_axes(rect=(0.3, 0.85, 0.2, 0.04))
button_accept = Button(
ax=axbutton_accept, label="Accept", image=None, color="0.85", hovercolor="0.95"
)
button_accept.on_clicked(on_clicked_accept) # type: ignore
axbutton_cancel = fig.add_axes(rect=(0.55, 0.85, 0.2, 0.04))
button_cancel = Button(
ax=axbutton_cancel, label="Cancel", image=None, color="0.85", hovercolor="0.95"
)
button_cancel.on_clicked(on_clicked_cancel) # type: ignore
slice_slider.on_changed(
partial(next_frame, images=image_3color, image_handle=image_handle)
)
mylogger.info("Display")
plt.show()
if __name__ == "__main__":
argh.dispatch_command(main)