Add files via upload

This commit is contained in:
David Rotermund 2024-02-16 10:00:30 +01:00 committed by GitHub
parent 040460c590
commit 64485b7ea5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -10,7 +10,8 @@ from functions.binning import binning
from functions.align_cameras import align_cameras
from functions.preprocessing import preprocessing
from functions.bandpass import bandpass
from functions.make_mask import make_mask
from functions.interpolate_along_time import interpolate_along_time
if torch.cuda.is_available():
device_name: str = "cuda:0"
@ -43,10 +44,12 @@ required_order: list[str] = ["acceptor", "donor", "oxygenation", "volume"]
test_overwrite_with_old_bining: bool = False
test_overwrite_with_old_aligned: bool = False
test_overwrite_with_old_aligned: bool = True
filename_data_binning_replace: str = "bin_old/Exp001_Trial001_Part001.mat"
filename_data_aligned_replace: str = "aligned_old/Exp001_Trial001_Part001.mat"
remove_heartbeat: bool = True
data = torch.tensor(np.load(filename_raw).astype(np.float32), dtype=dtype)
with open(filename_raw_json, "r") as file_handle:
@ -115,6 +118,83 @@ if test_overwrite_with_old_aligned:
camera_sequence[3] = data_aligned_replace[..., 3].clone()
del data_aligned_replace
# ->
if remove_heartbeat:
mask: torch.Tensor = make_mask(
filename_mask=filename_mask,
camera_sequence=camera_sequence,
device=device,
dtype=dtype,
)
mask_flatten = mask.flatten(start_dim=0, end_dim=-1)
interpolate_along_time(camera_sequence)
original_shape = camera_sequence[0].shape
heartbeat_ts: list[torch.Tensor] = []
for i in range(0, len(camera_sequence)):
heartbeat_ts.append(
bandpass(
data=camera_sequence[i].clone(),
device=camera_sequence[i].device,
low_frequency=lower_freqency_bandpass,
high_frequency=upper_freqency_bandpass,
fs=100.0,
filtfilt_chuck_size=10,
)
)
for i in range(0, len(heartbeat_ts)):
heartbeat_ts[i] = heartbeat_ts[i].flatten(start_dim=0, end_dim=-2)
heartbeat_ts[i] = heartbeat_ts[i][mask_flatten, :]
heartbeat_ts[i] = heartbeat_ts[i].movedim(0, -1)
heartbeat_ts[i] -= heartbeat_ts[i].mean(dim=0, keepdim=True)
heartbeat_ts_cat = torch.cat(
(heartbeat_ts[0], heartbeat_ts[1], heartbeat_ts[2], heartbeat_ts[3]),
dim=-1,
)
u_a, s_a, Vh_a = torch.linalg.svd(heartbeat_ts_cat, full_matrices=False)
u_a = u_a[:, 0]
Vh_a = Vh_a[0, :] * s_a[0]
heart_beat_activity_map: list[torch.Tensor] = []
start_pos: int = 0
end_pos: int = 0
for i in range(0, len(camera_sequence)):
end_pos = start_pos + int(mask_flatten.sum())
heart_beat_activity_map.append(
torch.full(
(original_shape[0], original_shape[1]),
torch.nan,
device=Vh_a.device,
dtype=Vh_a.dtype,
).flatten(start_dim=0, end_dim=-1)
)
heart_beat_activity_map[-1][mask_flatten] = Vh_a[start_pos:end_pos]
heart_beat_activity_map[-1] = heart_beat_activity_map[-1].reshape(
(original_shape[0], original_shape[1])
)
start_pos = end_pos
donor_power_factor = float(torch.abs(torch.nanmean(heart_beat_activity_map[0])))
acceptor_power_factor = float(torch.abs(torch.nanmean(heart_beat_activity_map[1])))
power_factors: None | list[float] = [donor_power_factor, acceptor_power_factor]
for i in range(0, len(camera_sequence)):
camera_sequence[i] -= heart_beat_activity_map[i].unsqueeze(-1) * u_a.unsqueeze(
0
).unsqueeze(0)
else:
power_factors = None
# <-
data_acceptor, data_donor, mask = preprocessing(
cameras=channels,
camera_sequence=camera_sequence,
@ -128,6 +208,7 @@ data_acceptor, data_donor, mask = preprocessing(
lower_frequency_heartbeat=lower_frequency_heartbeat,
upper_frequency_heartbeat=upper_frequency_heartbeat,
sample_frequency=sample_frequency,
power_factors=power_factors,
)
ratio_sequence: torch.Tensor = data_acceptor / data_donor
@ -202,6 +283,10 @@ u_a = u_a[:, 0]
s_a = s_a[0]
Vh_a = Vh_a[0, :]
u_a_std = torch.std(u_a)
u_a /= u_a_std
Vh_a *= u_a_std
heartbeatactivitmap_a = torch.zeros(
(original_shape[0], original_shape[1]), device=Vh_a.device, dtype=Vh_a.dtype
).flatten(start_dim=0, end_dim=-1)
@ -217,6 +302,10 @@ u_b = u_b[:, 0]
s_b = s_b[0]
Vh_b = Vh_b[0, :]
u_b_std = torch.std(u_b)
u_b /= u_b_std
Vh_b *= u_b_std
heartbeatactivitmap_b = torch.zeros(
(original_shape[0], original_shape[1]), device=Vh_b.device, dtype=Vh_b.dtype
).flatten(start_dim=0, end_dim=-1)