Add files via upload

This commit is contained in:
David Rotermund 2024-08-10 20:56:23 +02:00 committed by GitHub
parent 2e5879cd62
commit 6599c9c81d
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 772 additions and 188 deletions

View file

@ -5,6 +5,8 @@
"raw_path": "raw",
"export_path": "output_M3879M_2021-10-05",
"ref_image_path": "ref_images_M3879M_2021-10-05",
"heartbeat_remove": true, // if gevi must be true; geci: who knows...
"gevi": true, // true => gevi, false => geci
// Ratio Sequence
"classical_ratio_mode": true, // true: a/d false: 1+a-d
// Regression

View file

@ -5,6 +5,8 @@
"raw_path": "raw",
"export_path": "output_M_Sert_Cre_41",
"ref_image_path": "ref_images_M_Sert_Cre_41",
"heartbeat_remove": false,
"gevi": false, // true => gevi, false => geci
// Ratio Sequence
"classical_ratio_mode": true, // true: a/d false: 1+a-d
// Regression

62
config_M_Sert_Cre_42.json Normal file
View file

@ -0,0 +1,62 @@
{
"basic_path": "/data_1/hendrik",
"recoding_data": "2023-07-18",
"mouse_identifier": "M_Sert_Cre_42",
"raw_path": "raw",
"export_path": "output_M_Sert_Cre_42",
"ref_image_path": "ref_images_M_Sert_Cre_42",
"heartbeat_remove": false,
"gevi": false, // true => gevi, false => geci
// Ratio Sequence
"classical_ratio_mode": true, // true: a/d false: 1+a-d
// Regression
//"target_camera_acceptor": "acceptor",
"target_camera_acceptor": "",
"regressor_cameras_acceptor": [
"oxygenation",
"volume"
],
"target_camera_donor": "donor",
"regressor_cameras_donor": [
// "oxygenation",
"volume"
],
// binning
"binning_enable": true,
"binning_at_the_end": false,
"binning_kernel_size": 4,
"binning_stride": 4,
"binning_divisor_override": 1,
// alignment
"alignment_batch_size": 200,
"rotation_stabilization_threshold_factor": 3.0, // >= 1.0
"rotation_stabilization_threshold_border": 0.9, // <= 1.0
// Heart beat detection
"lower_freqency_bandpass": 5.0, // Hz
"upper_freqency_bandpass": 14.0, // Hz
"heartbeat_filtfilt_chuck_size": 10,
// Gauss smear
"gauss_smear_spatial_width": 8,
"gauss_smear_temporal_width": 0.1,
"gauss_smear_use_matlab_mask": false,
// LED Ramp on
"skip_frames_in_the_beginning": 100, // Frames
// PyTorch
"dtype": "float32",
"force_to_cpu": false,
// Save
"save_as_python": true, // produces .npz files (compressed)
"save_as_matlab": false, // produces .hd5 file (compressed)
// Save extra information
"save_alignment": false,
"save_heartbeat": false,
"save_factors": false,
"save_regression_coefficients": false,
// Not important parameter
"required_order": [
"acceptor",
"donor",
"oxygenation",
"volume"
]
}

62
config_M_Sert_Cre_45.json Normal file
View file

@ -0,0 +1,62 @@
{
"basic_path": "/data_1/hendrik",
"recoding_data": "2023-07-18",
"mouse_identifier": "M_Sert_Cre_45",
"raw_path": "raw",
"export_path": "output_M_Sert_Cre_45",
"ref_image_path": "ref_images_M_Sert_Cre_45",
"heartbeat_remove": false,
"gevi": false, // true => gevi, false => geci
// Ratio Sequence
"classical_ratio_mode": true, // true: a/d false: 1+a-d
// Regression
//"target_camera_acceptor": "acceptor",
"target_camera_acceptor": "",
"regressor_cameras_acceptor": [
"oxygenation",
"volume"
],
"target_camera_donor": "donor",
"regressor_cameras_donor": [
// "oxygenation",
"volume"
],
// binning
"binning_enable": true,
"binning_at_the_end": false,
"binning_kernel_size": 4,
"binning_stride": 4,
"binning_divisor_override": 1,
// alignment
"alignment_batch_size": 200,
"rotation_stabilization_threshold_factor": 3.0, // >= 1.0
"rotation_stabilization_threshold_border": 0.9, // <= 1.0
// Heart beat detection
"lower_freqency_bandpass": 5.0, // Hz
"upper_freqency_bandpass": 14.0, // Hz
"heartbeat_filtfilt_chuck_size": 10,
// Gauss smear
"gauss_smear_spatial_width": 8,
"gauss_smear_temporal_width": 0.1,
"gauss_smear_use_matlab_mask": false,
// LED Ramp on
"skip_frames_in_the_beginning": 100, // Frames
// PyTorch
"dtype": "float32",
"force_to_cpu": false,
// Save
"save_as_python": true, // produces .npz files (compressed)
"save_as_matlab": false, // produces .hd5 file (compressed)
// Save extra information
"save_alignment": false,
"save_heartbeat": false,
"save_factors": false,
"save_regression_coefficients": false,
// Not important parameter
"required_order": [
"acceptor",
"donor",
"oxygenation",
"volume"
]
}

62
config_M_Sert_Cre_46.json Normal file
View file

@ -0,0 +1,62 @@
{
"basic_path": "/data_1/hendrik",
"recoding_data": "2023-03-16",
"mouse_identifier": "M_Sert_Cre_46",
"raw_path": "raw",
"export_path": "output_M_Sert_Cre_46",
"ref_image_path": "ref_images_M_Sert_Cre_46",
"heartbeat_remove": false,
"gevi": false, // true => gevi, false => geci
// Ratio Sequence
"classical_ratio_mode": true, // true: a/d false: 1+a-d
// Regression
//"target_camera_acceptor": "acceptor",
"target_camera_acceptor": "",
"regressor_cameras_acceptor": [
"oxygenation",
"volume"
],
"target_camera_donor": "donor",
"regressor_cameras_donor": [
// "oxygenation",
"volume"
],
// binning
"binning_enable": true,
"binning_at_the_end": false,
"binning_kernel_size": 4,
"binning_stride": 4,
"binning_divisor_override": 1,
// alignment
"alignment_batch_size": 200,
"rotation_stabilization_threshold_factor": 3.0, // >= 1.0
"rotation_stabilization_threshold_border": 0.9, // <= 1.0
// Heart beat detection
"lower_freqency_bandpass": 5.0, // Hz
"upper_freqency_bandpass": 14.0, // Hz
"heartbeat_filtfilt_chuck_size": 10,
// Gauss smear
"gauss_smear_spatial_width": 8,
"gauss_smear_temporal_width": 0.1,
"gauss_smear_use_matlab_mask": false,
// LED Ramp on
"skip_frames_in_the_beginning": 100, // Frames
// PyTorch
"dtype": "float32",
"force_to_cpu": false,
// Save
"save_as_python": true, // produces .npz files (compressed)
"save_as_matlab": false, // produces .hd5 file (compressed)
// Save extra information
"save_alignment": false,
"save_heartbeat": false,
"save_factors": false,
"save_regression_coefficients": false,
// Not important parameter
"required_order": [
"acceptor",
"donor",
"oxygenation",
"volume"
]
}

View file

@ -5,6 +5,8 @@
"raw_path": "raw",
"export_path": "output_M_Sert_Cre_49",
"ref_image_path": "ref_images_M_Sert_Cre_49",
"heartbeat_remove": false,
"gevi": false, // true => gevi, false => geci
// Ratio Sequence
"classical_ratio_mode": true, // true: a/d false: 1+a-d
// Regression

71
geci_loader.py Normal file
View file

@ -0,0 +1,71 @@
import numpy as np
import os
import argh
# mouse:int = 0, 1, 2, 3, 4
def loader(mouse:int = 0, fpath:str = "/data_1/hendrik/gevi") -> None:
mouse_name = [
'M_Sert_Cre_41',
'M_Sert_Cre_42',
'M_Sert_Cre_45',
'M_Sert_Cre_46',
'M_Sert_Cre_49'
]
n_tris = [
[15, 15, 30, 30, 30, 30,], # 0 in cond 7
[15, 15, 30, 30, 30, 30,], # 0 in cond 7
[15, 15, 30, 30, 30, 30,], # 0 in cond 7
[20, 40, 20, 20,], # 0, 0, 0 in cond 5-7
[20, 40, 20, 20,], # 0, 0, 0 in cond 5-7
]
# 41, 42, 45, 46, 49:
# "1": "control",
# "2": "visual control grating 100 1s",
# "3": "optical Stimulation 20Hz 50% 5 Intervals",
# "4": "optical Stimulation 20Hz 100% 5 Intervals",
# "5": "optical Stimulation 20Hz 50% and grating 100",
# "6": "optical Stimulation 20Hz 100% and grating 100",
# "7": "grating 3s"
lbs = [
['control', 'visual control', 'op20 50 5', 'op20 100 5', 'op20 50 grat', 'op20 100 grat'],
['control', 'visual control', 'op20 50 5', 'op20 100 5', 'op20 50 grat', 'op20 100 grat'],
['control', 'visual control', 'op20 50 5', 'op20 100 5', 'op20 50 grat', 'op20 100 grat'],
['control', 'visual control', 'op20 50 5', 'op20 100 5'],
['control', 'visual control', 'op20 50 5', 'op20 100 5']
]
n_exp = len(n_tris[mouse])
for i_exp in range(n_exp):
n_tri = n_tris[mouse][i_exp]
for i_tri in range(n_tri):
experiment_name: str = f"Exp{i_exp+1:03d}_Trial{i_tri+1:03d}"
tmp_fname = os.path.join(
fpath, "output_" + mouse_name[mouse], experiment_name + "_acceptor_donor.npz"
)
print(f'Processing file "{tmp_fname}"...')
tmp = np.load(tmp_fname)
tmp_data_sequence = tmp["data_donor"]
tmp_light_signal = tmp["data_acceptor"]
if (i_exp == 0) and (i_tri == 0):
mask = tmp["mask"]
new_shape = [n_exp, *tmp_data_sequence.shape]
data_sequence = np.zeros(new_shape)
light_signal = np.zeros(new_shape)
data_sequence[i_exp] += tmp_data_sequence / n_tri
light_signal[i_exp] += tmp_light_signal / n_tri
np.save("dsq_" + mouse_name[mouse], data_sequence)
np.save("lsq_" + mouse_name[mouse], light_signal)
np.save("msq_" + mouse_name[mouse], mask)
if __name__ == "__main__":
argh.dispatch_command(loader)

209
geci_plot.py Normal file
View file

@ -0,0 +1,209 @@
import numpy as np
import matplotlib.pyplot as plt
import h5py # type: ignore
import argh
import scipy # type: ignore
import json
import os
from jsmin import jsmin # type:ignore
from functions.get_trials import get_trials
def func_pow(x, a, b, c):
return -a * x**b + c
def func_exp(x, a, b, c):
return a * np.exp(-x / b) + c
# mouse: int = 0, 1, 2, 3, 4
def plot(
filename: str = "config_M_Sert_Cre_49.json",
experiment: int = 4,
skip_timesteps: int = 100,
# If there is no special ROI... Get one! This is just a backup
roi_control_path: str = "/data_1/hendrik/2023-03-15/ROI_control.mat",
roi_sdraken_path: str = "/data_1/hendrik/2023-03-15/ROI_sDarken.mat",
remove_fit: bool = True,
fit_power: bool = False, # True => -ax^b ; False => exp(-b)
) -> None:
# lbs = [
# [
# "control",
# "visual control",
# "op20 50 5",
# "op20 100 5",
# "op20 50 grat",
# "op20 100 grat",
# ],
# [
# "control",
# "visual control",
# "op20 50 5",
# "op20 100 5",
# "op20 50 grat",
# "op20 100 grat",
# ],
# [
# "control",
# "visual control",
# "op20 50 5",
# "op20 100 5",
# "op20 50 grat",
# "op20 100 grat",
# ],
# ["control", "visual control", "op20 50 5", "op20 100 5"],
# ["control", "visual control", "op20 50 5", "op20 100 5"],
# ]
if os.path.isfile(filename) is False:
print(f"{filename} is missing")
exit()
with open(filename, "r") as file:
config = json.loads(jsmin(file.read()))
raw_data_path: str = os.path.join(
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
if os.path.isdir(raw_data_path) is False:
print(f"ERROR: could not find raw directory {raw_data_path}!!!!")
exit()
trials = get_trials(raw_data_path, experiment).numpy()
assert trials.shape[0] > 0
with open(os.path.join(raw_data_path, f"Exp{experiment:03d}_Trial{trials[0]:03d}_Part001_meta.txt"), "r") as file:
metadata = json.loads(jsmin(file.read()))
experiment_names = metadata['sessionMetaData']['experimentNames'][str(experiment)]
roi_path: str = os.path.join(config["basic_path"], config["recoding_data"])
roi_control_mat: str = os.path.join(roi_path, "ROI_control.mat")
roi_sdarken_mat: str = os.path.join(roi_path, "ROI_sDarken.mat")
if os.path.isdir(roi_control_mat):
roi_control_path = roi_control_mat
if os.path.isdir(roi_sdarken_mat):
roi_sdraken_path = roi_sdarken_mat
print("Load data...")
data = np.load("dsq_" + config["mouse_identifier"] + ".npy", mmap_mode="r")
print("Load light signal...")
light = np.load("lsq_" + config["mouse_identifier"] + ".npy", mmap_mode="r")
print("Load mask...")
mask = np.load("msq_" + config["mouse_identifier"] + ".npy")
hf = h5py.File(roi_control_path, "r")
roi_lighten = np.array(hf["roi"]).T
roi_lighten *= mask
hf = h5py.File(roi_sdraken_path, "r")
roi_darken = np.array(hf["roi"]).T
roi_darken *= mask
plt.figure(1)
a_show = data[experiment - 1, :, :, 1000].copy()
a_show[(roi_darken + roi_lighten) < 0.5] = np.nan
plt.imshow(a_show)
plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment}")
plt.show(block=False)
plt.figure(2)
a_dontshow = data[experiment - 1, :, :, 1000].copy()
a_dontshow[(roi_darken + roi_lighten) > 0.5] = np.nan
plt.imshow(a_dontshow)
plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment}")
plt.show(block=False)
plt.figure(3)
light_exp = light[experiment - 1, :, :, skip_timesteps:].copy()
light_exp[(roi_darken + roi_lighten) < 0.5, :] = 0.0
light_signal = light_exp.mean(axis=(0, 1))
light_signal -= light_signal.min()
light_signal /= light_signal.max()
a_exp = data[experiment - 1, :, :, skip_timesteps:].copy()
if remove_fit:
combined_matrix = (roi_darken + roi_lighten) > 0
idx = np.where(combined_matrix)
for idx_pos in range(0, idx[0].shape[0]):
temp = a_exp[idx[0][idx_pos], idx[1][idx_pos], :]
temp -= temp.mean()
data_time = np.arange(0, temp.shape[0], dtype=np.float32) + skip_timesteps
data_time /= 100.0
data_min = temp.min()
data_max = temp.max()
data_delta = data_max - data_min
a_min = data_min - data_delta
b_min = 0.01
a_max = data_max + data_delta
if fit_power:
b_max = 10.0
else:
b_max = 100.0
c_min = data_min - data_delta
c_max = data_max + data_delta
try:
if fit_power:
popt, _ = scipy.optimize.curve_fit(
f=func_pow,
xdata=data_time,
ydata=np.nan_to_num(temp),
bounds=([a_min, b_min, c_min], [a_max, b_max, c_max]),
)
pattern: np.ndarray | None = func_pow(data_time, *popt)
else:
popt, _ = scipy.optimize.curve_fit(
f=func_exp,
xdata=data_time,
ydata=np.nan_to_num(temp),
bounds=([a_min, b_min, c_min], [a_max, b_max, c_max]),
)
pattern = func_exp(data_time, *popt)
assert pattern is not None
pattern -= pattern.mean()
scale = (temp * pattern).sum() / (pattern**2).sum()
pattern *= scale
except ValueError:
print(f"Fit failed: Position ({idx[0][idx_pos]}, {idx[1][idx_pos]}")
pattern = None
if pattern is not None:
temp -= pattern
darken = a_exp[roi_darken > 0.5, :].sum(axis=0) / (roi_darken > 0.5).sum()
lighten = a_exp[roi_lighten > 0.5, :].sum(axis=0) / (roi_lighten > 0.5).sum()
light_signal *= darken.max() - darken.min()
light_signal += darken.min()
time_axis = np.arange(0, lighten.shape[-1], dtype=np.float32) + skip_timesteps
time_axis /= 100.0
plt.plot(time_axis, light_signal, c="k", label="light")
plt.plot(time_axis, darken, label="sDarken")
plt.plot(time_axis, lighten, label="control")
plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment} ({experiment_names})")
plt.legend()
plt.show()
if __name__ == "__main__":
argh.dispatch_command(plot)

View file

@ -99,7 +99,7 @@ def process_trial(
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
mylogger.info(f"Data shape: {data.shape}")
mylogger.info("-==- Done -==-")
@ -266,9 +266,9 @@ def process_trial(
batch_size=config["alignment_batch_size"],
fill_value=-100.0,
)
mylogger.info(f"Rotation: {round(float(angle_refref[0]),2)} degree")
mylogger.info(f"Rotation: {round(float(angle_refref[0]), 2)} degree")
mylogger.info(
f"Translation: {round(float(tvec_refref[0]),1)} x {round(float(tvec_refref[1]),1)} pixel"
f"Translation: {round(float(tvec_refref[0]), 1)} x {round(float(tvec_refref[1]), 1)} pixel"
)
if config["save_alignment"]:
@ -285,7 +285,7 @@ def process_trial(
np.save(temp_path, tvec_refref.cpu())
mylogger.info("Moving & rotating the oxygenation ref image")
ref_image_oxygenation = tv.transforms.functional.affine(
ref_image_oxygenation = tv.transforms.functional.affine( # type: ignore
img=ref_image_oxygenation.unsqueeze(0),
angle=-float(angle_refref),
translate=[0, 0],
@ -295,7 +295,7 @@ def process_trial(
fill=-100.0,
)
ref_image_oxygenation = tv.transforms.functional.affine(
ref_image_oxygenation = tv.transforms.functional.affine( # type: ignore
img=ref_image_oxygenation,
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
@ -313,8 +313,8 @@ def process_trial(
volume_index: int = config["required_order"].index("volume")
mylogger.info("Rotate acceptor")
data[acceptor_index, ...] = tv.transforms.functional.affine(
img=data[acceptor_index, ...],
data[acceptor_index, ...] = tv.transforms.functional.affine( # type: ignore
img=data[acceptor_index, ...], # type: ignore
angle=-float(angle_refref),
translate=[0, 0],
scale=1.0,
@ -324,7 +324,7 @@ def process_trial(
)
mylogger.info("Translate acceptor")
data[acceptor_index, ...] = tv.transforms.functional.affine(
data[acceptor_index, ...] = tv.transforms.functional.affine( # type: ignore
img=data[acceptor_index, ...],
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
@ -335,7 +335,7 @@ def process_trial(
)
mylogger.info("Rotate oxygenation")
data[oxygenation_index, ...] = tv.transforms.functional.affine(
data[oxygenation_index, ...] = tv.transforms.functional.affine( # type: ignore
img=data[oxygenation_index, ...],
angle=-float(angle_refref),
translate=[0, 0],
@ -346,7 +346,7 @@ def process_trial(
)
mylogger.info("Translate oxygenation")
data[oxygenation_index, ...] = tv.transforms.functional.affine(
data[oxygenation_index, ...] = tv.transforms.functional.affine( # type: ignore
img=data[oxygenation_index, ...],
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
@ -359,7 +359,7 @@ def process_trial(
mylogger.info("Perform rotation between donor and volume and its ref images")
mylogger.info("for all frames and then rotate all the data accordingly")
perform_donor_volume_rotation
(
data[acceptor_index, ...],
data[donor_index, ...],
@ -381,9 +381,9 @@ def process_trial(
mylogger.info(
f"angles: "
f"min {round(float(angle_donor_volume.min()),2)} "
f"max {round(float(angle_donor_volume.max()),2)} "
f"mean {round(float(angle_donor_volume.mean()),2)} "
f"min {round(float(angle_donor_volume.min()), 2)} "
f"max {round(float(angle_donor_volume.max()), 2)} "
f"mean {round(float(angle_donor_volume.mean()), 2)} "
)
if config["save_alignment"]:
@ -417,15 +417,15 @@ def process_trial(
mylogger.info(
f"translation dim 0: "
f"min {round(float(tvec_donor_volume[:,0].min()),1)} "
f"max {round(float(tvec_donor_volume[:,0].max()),1)} "
f"mean {round(float(tvec_donor_volume[:,0].mean()),1)} "
f"min {round(float(tvec_donor_volume[:, 0].min()), 1)} "
f"max {round(float(tvec_donor_volume[:, 0].max()), 1)} "
f"mean {round(float(tvec_donor_volume[:, 0].mean()), 1)} "
)
mylogger.info(
f"translation dim 1: "
f"min {round(float(tvec_donor_volume[:,1].min()),1)} "
f"max {round(float(tvec_donor_volume[:,1].max()),1)} "
f"mean {round(float(tvec_donor_volume[:,1].mean()),1)} "
f"min {round(float(tvec_donor_volume[:, 1].min()), 1)} "
f"max {round(float(tvec_donor_volume[:, 1].max()), 1)} "
f"mean {round(float(tvec_donor_volume[:, 1].mean()), 1)} "
)
if config["save_alignment"]:
@ -471,172 +471,183 @@ def process_trial(
sample_frequency: float = 1.0 / meta_frame_time
mylogger.info("Extract heartbeat from volume signal")
heartbeat_ts: torch.Tensor = bandpass(
data=data[volume_index, ...].movedim(0, -1).clone(),
low_frequency=config["lower_freqency_bandpass"],
high_frequency=config["upper_freqency_bandpass"],
fs=sample_frequency,
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
)
heartbeat_ts = heartbeat_ts.flatten(start_dim=0, end_dim=-2)
mask_flatten: torch.Tensor = mask_positve.flatten(start_dim=0, end_dim=-1)
if config["gevi"]:
assert config["heartbeat_remove"]
heartbeat_ts = heartbeat_ts[mask_flatten, :]
heartbeat_ts = heartbeat_ts.movedim(0, -1)
heartbeat_ts -= heartbeat_ts.mean(dim=0, keepdim=True)
try:
volume_heartbeat, _, _ = torch.linalg.svd(heartbeat_ts, full_matrices=False)
except torch.cuda.OutOfMemoryError:
mylogger.info("torch.cuda.OutOfMemoryError: Fallback to cpu")
volume_heartbeat_cpu, _, _ = torch.linalg.svd(
heartbeat_ts.cpu(), full_matrices=False
)
volume_heartbeat = volume_heartbeat_cpu.to(heartbeat_ts.data, copy=True)
del volume_heartbeat_cpu
volume_heartbeat = volume_heartbeat[:, 0]
volume_heartbeat -= volume_heartbeat[
config["skip_frames_in_the_beginning"] :
].mean()
del heartbeat_ts
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
if config["save_heartbeat"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_volume_heartbeat.npy"
)
mylogger.info(f"Save volume heartbeat to {temp_path}")
np.save(temp_path, volume_heartbeat.cpu())
mylogger.info("-==- Done -==-")
volume_heartbeat = volume_heartbeat.unsqueeze(0).unsqueeze(0)
norm_volume_heartbeat = (
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] ** 2
).sum(dim=-1)
heartbeat_coefficients: torch.Tensor = torch.zeros(
(data.shape[0], data.shape[-2], data.shape[-1]),
dtype=data.dtype,
device=data.device,
)
for i in range(0, data.shape[0]):
y = bandpass(
data=data[i, ...].movedim(0, -1).clone(),
if config["heartbeat_remove"]:
mylogger.info("Extract heartbeat from volume signal")
heartbeat_ts: torch.Tensor = bandpass(
data=data[volume_index, ...].movedim(0, -1).clone(),
low_frequency=config["lower_freqency_bandpass"],
high_frequency=config["upper_freqency_bandpass"],
fs=sample_frequency,
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
)[..., config["skip_frames_in_the_beginning"] :]
y -= y.mean(dim=-1, keepdim=True)
heartbeat_coefficients[i, ...] = (
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] * y
).sum(dim=-1) / norm_volume_heartbeat
heartbeat_coefficients[i, ...] *= mask_positve.type(
dtype=heartbeat_coefficients.dtype
)
del y
heartbeat_ts = heartbeat_ts.flatten(start_dim=0, end_dim=-2)
mask_flatten: torch.Tensor = mask_positve.flatten(start_dim=0, end_dim=-1)
if config["save_heartbeat"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_heartbeat_coefficients.npy"
heartbeat_ts = heartbeat_ts[mask_flatten, :]
heartbeat_ts = heartbeat_ts.movedim(0, -1)
heartbeat_ts -= heartbeat_ts.mean(dim=0, keepdim=True)
try:
volume_heartbeat, _, _ = torch.linalg.svd(heartbeat_ts, full_matrices=False)
except torch.cuda.OutOfMemoryError:
mylogger.info("torch.cuda.OutOfMemoryError: Fallback to cpu")
volume_heartbeat_cpu, _, _ = torch.linalg.svd(
heartbeat_ts.cpu(), full_matrices=False
)
volume_heartbeat = volume_heartbeat_cpu.to(heartbeat_ts.data, copy=True)
del volume_heartbeat_cpu
volume_heartbeat = volume_heartbeat[:, 0]
volume_heartbeat -= volume_heartbeat[
config["skip_frames_in_the_beginning"] :
].mean()
del heartbeat_ts
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[
torch.cuda.memory_reserved(device),
torch.cuda.memory_allocated(device),
]
)
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
if config["save_heartbeat"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_volume_heartbeat.npy"
)
mylogger.info(f"Save volume heartbeat to {temp_path}")
np.save(temp_path, volume_heartbeat.cpu())
mylogger.info("-==- Done -==-")
volume_heartbeat = volume_heartbeat.unsqueeze(0).unsqueeze(0)
norm_volume_heartbeat = (
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] ** 2
).sum(dim=-1)
heartbeat_coefficients: torch.Tensor = torch.zeros(
(data.shape[0], data.shape[-2], data.shape[-1]),
dtype=data.dtype,
device=data.device,
)
mylogger.info(f"Save heartbeat coefficients to {temp_path}")
np.save(temp_path, heartbeat_coefficients.cpu())
mylogger.info("-==- Done -==-")
for i in range(0, data.shape[0]):
y = bandpass(
data=data[i, ...].movedim(0, -1).clone(),
low_frequency=config["lower_freqency_bandpass"],
high_frequency=config["upper_freqency_bandpass"],
fs=sample_frequency,
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
)[..., config["skip_frames_in_the_beginning"] :]
y -= y.mean(dim=-1, keepdim=True)
mylogger.info("Remove heart beat from data")
data -= heartbeat_coefficients.unsqueeze(1) * volume_heartbeat.unsqueeze(0).movedim(
-1, 1
)
mylogger.info("-==- Done -==-")
heartbeat_coefficients[i, ...] = (
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] * y
).sum(dim=-1) / norm_volume_heartbeat
donor_heartbeat_factor = heartbeat_coefficients[donor_index, ...].clone()
acceptor_heartbeat_factor = heartbeat_coefficients[acceptor_index, ...].clone()
del heartbeat_coefficients
heartbeat_coefficients[i, ...] *= mask_positve.type(
dtype=heartbeat_coefficients.dtype
)
del y
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
if config["save_heartbeat"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_heartbeat_coefficients.npy"
)
mylogger.info(f"Save heartbeat coefficients to {temp_path}")
np.save(temp_path, heartbeat_coefficients.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Remove heart beat from data")
data -= heartbeat_coefficients.unsqueeze(1) * volume_heartbeat.unsqueeze(
0
).movedim(-1, 1)
mylogger.info("-==- Done -==-")
donor_heartbeat_factor = heartbeat_coefficients[donor_index, ...].clone()
acceptor_heartbeat_factor = heartbeat_coefficients[acceptor_index, ...].clone()
del heartbeat_coefficients
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[
torch.cuda.memory_reserved(device),
torch.cuda.memory_allocated(device),
]
)
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
mylogger.info("Calculate scaling factor for donor and acceptor")
donor_factor: torch.Tensor = (
donor_heartbeat_factor + acceptor_heartbeat_factor
) / (2 * donor_heartbeat_factor)
acceptor_factor: torch.Tensor = (
donor_heartbeat_factor + acceptor_heartbeat_factor
) / (2 * acceptor_heartbeat_factor)
del donor_heartbeat_factor
del acceptor_heartbeat_factor
if config["save_factors"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_donor_factor.npy"
)
mylogger.info(f"Save donor factor to {temp_path}")
np.save(temp_path, donor_factor.cpu())
temp_path = os.path.join(
config["export_path"], experiment_name + "_acceptor_factor.npy"
)
mylogger.info(f"Save acceptor factor to {temp_path}")
np.save(temp_path, acceptor_factor.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Scale acceptor to heart beat amplitude")
mylogger.info("Calculate mean")
mean_values_acceptor = data[
acceptor_index, config["skip_frames_in_the_beginning"] :, ...
].nanmean(dim=0, keepdim=True)
mylogger.info("Remove mean")
data[acceptor_index, ...] -= mean_values_acceptor
mylogger.info("Apply acceptor_factor and mask")
data[acceptor_index, ...] *= acceptor_factor.unsqueeze(
0
) * mask_positve.unsqueeze(0)
mylogger.info("Add mean")
data[acceptor_index, ...] += mean_values_acceptor
mylogger.info("-==- Done -==-")
mylogger.info("Scale donor to heart beat amplitude")
mylogger.info("Calculate mean")
mean_values_donor = data[
donor_index, config["skip_frames_in_the_beginning"] :, ...
].nanmean(dim=0, keepdim=True)
mylogger.info("Remove mean")
data[donor_index, ...] -= mean_values_donor
mylogger.info("Apply donor_factor and mask")
data[donor_index, ...] *= donor_factor.unsqueeze(0) * mask_positve.unsqueeze(0)
mylogger.info("Add mean")
data[donor_index, ...] += mean_values_donor
mylogger.info("-==- Done -==-")
mylogger.info("Divide by mean over time")
data /= data[:, config["skip_frames_in_the_beginning"] :, ...].nanmean(
dim=1,
keepdim=True,
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info("Calculate scaling factor for donor and acceptor")
donor_factor: torch.Tensor = (
donor_heartbeat_factor + acceptor_heartbeat_factor
) / (2 * donor_heartbeat_factor)
acceptor_factor: torch.Tensor = (
donor_heartbeat_factor + acceptor_heartbeat_factor
) / (2 * acceptor_heartbeat_factor)
mylogger.info("-==- Done -==-")
del donor_heartbeat_factor
del acceptor_heartbeat_factor
if config["save_factors"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_donor_factor.npy"
)
mylogger.info(f"Save donor factor to {temp_path}")
np.save(temp_path, donor_factor.cpu())
temp_path = os.path.join(
config["export_path"], experiment_name + "_acceptor_factor.npy"
)
mylogger.info(f"Save acceptor factor to {temp_path}")
np.save(temp_path, acceptor_factor.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Scale acceptor to heart beat amplitude")
mylogger.info("Calculate mean")
mean_values_acceptor = data[
acceptor_index, config["skip_frames_in_the_beginning"] :, ...
].nanmean(dim=0, keepdim=True)
mylogger.info("Remove mean")
data[acceptor_index, ...] -= mean_values_acceptor
mylogger.info("Apply acceptor_factor and mask")
data[acceptor_index, ...] *= acceptor_factor.unsqueeze(0) * mask_positve.unsqueeze(
0
)
mylogger.info("Add mean")
data[acceptor_index, ...] += mean_values_acceptor
mylogger.info("-==- Done -==-")
mylogger.info("Scale donor to heart beat amplitude")
mylogger.info("Calculate mean")
mean_values_donor = data[
donor_index, config["skip_frames_in_the_beginning"] :, ...
].nanmean(dim=0, keepdim=True)
mylogger.info("Remove mean")
data[donor_index, ...] -= mean_values_donor
mylogger.info("Apply donor_factor and mask")
data[donor_index, ...] *= donor_factor.unsqueeze(0) * mask_positve.unsqueeze(0)
mylogger.info("Add mean")
data[donor_index, ...] += mean_values_donor
mylogger.info("-==- Done -==-")
mylogger.info("Divide by mean over time")
data /= data[:, config["skip_frames_in_the_beginning"] :, ...].nanmean(
dim=1,
keepdim=True,
)
data = data.nan_to_num(nan=0.0)
mylogger.info("-==- Done -==-")
mylogger.info("Preparation for regression -- Gauss smear")
spatial_width = float(config["gauss_smear_spatial_width"])
@ -669,7 +680,7 @@ def process_trial(
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
overwrite_fft_gauss: None | torch.Tensor = None
for i in range(0, data_filtered.shape[0]):
@ -703,7 +714,7 @@ def process_trial(
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
mylogger.info("-==- Done -==-")
mylogger.info("Preperation for Regression")
@ -747,6 +758,9 @@ def process_trial(
mylogger.info("-==- Done -==-")
else:
dual_signal_mode = False
target_id = config["required_order"].index("acceptor")
data_acceptor = data[target_id, ...].clone()
data_acceptor[mask_negative, :] = 0.0
if len(config["target_camera_donor"]) > 0:
mylogger.info("Regression Donor")
@ -781,6 +795,9 @@ def process_trial(
mylogger.info("-==- Done -==-")
else:
dual_signal_mode = False
target_id = config["required_order"].index("donor")
data_donor = data[target_id, ...].clone()
data_donor[mask_negative, :] = 0.0
del data
del data_filtered
@ -791,24 +808,119 @@ def process_trial(
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
# #####################
if config["gevi"]:
assert dual_signal_mode
else:
assert dual_signal_mode is False
if dual_signal_mode is False:
mylogger.info("mono signal model")
mylogger.info("Remove nan")
data_acceptor = torch.nan_to_num(data_acceptor, nan=0.0)
data_donor = torch.nan_to_num(data_donor, nan=0.0)
mylogger.info("-==- Done -==-")
if config["binning_enable"] and config["binning_at_the_end"]:
mylogger.info("Binning of data")
mylogger.info(
(
f"kernel_size={int(config['binning_kernel_size'])}, "
f"stride={int(config['binning_stride'])}, "
"divisor_override=None"
)
)
data_acceptor = binning(
data_acceptor.unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=None,
).squeeze(-1)
data_donor = binning(
data_donor.unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=None,
).squeeze(-1)
mask_positve = (
binning(
mask_positve.unsqueeze(-1).unsqueeze(-1).type(dtype=dtype),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=None,
)
.squeeze(-1)
.squeeze(-1)
)
mask_positve = (mask_positve > 0).type(torch.bool)
if config["save_as_python"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_acceptor_donor.npz"
)
mylogger.info(f"Save data donor and acceptor and mask to {temp_path}")
np.savez_compressed(
temp_path,
data_acceptor=data_acceptor.cpu(),
data_donor=data_donor.cpu(),
mask=mask_positve.cpu(),
)
if config["save_as_matlab"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_acceptor_donor.hd5"
)
mylogger.info(f"Save data donor and acceptor and mask to {temp_path}")
file_handle = h5py.File(temp_path, "w")
mask_positve = mask_positve.movedim(0, -1)
data_acceptor = data_acceptor.movedim(1, -1).movedim(0, -1)
data_donor = data_donor.movedim(1, -1).movedim(0, -1)
_ = file_handle.create_dataset(
"mask",
data=mask_positve.type(torch.uint8).cpu(),
compression="gzip",
compression_opts=9,
)
_ = file_handle.create_dataset(
"data_acceptor",
data=data_acceptor.cpu(),
compression="gzip",
compression_opts=9,
)
_ = file_handle.create_dataset(
"data_donor",
data=data_donor.cpu(),
compression="gzip",
compression_opts=9,
)
mylogger.info("Reminder: How to read with matlab:")
mylogger.info(f"mask = h5read('{temp_path}','/mask');")
mylogger.info(f"data_acceptor = h5read('{temp_path}','/data_acceptor');")
mylogger.info(f"data_donor = h5read('{temp_path}','/data_donor');")
file_handle.close()
return
# #####################
mylogger.info("Calculate ratio sequence")
if dual_signal_mode:
if config["classical_ratio_mode"]:
mylogger.info("via acceptor / donor")
ratio_sequence: torch.Tensor = data_acceptor / data_donor
mylogger.info("via / mean over time")
ratio_sequence /= ratio_sequence.mean(dim=-1, keepdim=True)
else:
mylogger.info("via 1.0 + acceptor - donor")
ratio_sequence = 1.0 + data_acceptor - data_donor
if config["classical_ratio_mode"]:
mylogger.info("via acceptor / donor")
ratio_sequence: torch.Tensor = data_acceptor / data_donor
mylogger.info("via / mean over time")
ratio_sequence /= ratio_sequence.mean(dim=-1, keepdim=True)
else:
mylogger.info("mono signal model")
if len(config["target_camera_donor"]) > 0:
ratio_sequence = data_donor.clone()
else:
ratio_sequence = data_acceptor.clone()
mylogger.info("via 1.0 + acceptor - donor")
ratio_sequence = 1.0 + data_acceptor - data_donor
mylogger.info("Remove nan")
ratio_sequence = torch.nan_to_num(ratio_sequence, nan=0.0)