Add files via upload

This commit is contained in:
David Rotermund 2024-02-26 18:56:59 +01:00 committed by GitHub
parent e462ea94c5
commit 6b3146be0f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 632 additions and 22 deletions

View file

@ -11,16 +11,21 @@
"oxygenation",
"volume"
],
"dtype": "float32",
"binning_enable": false,
// binning
"binning_enable": true,
"binning_before_alignment": false, // otherwise at the end after everything else
"binning_kernel_size": 4,
"binning_stride": 4,
"binning_divisor_override": 1,
// alignment
"alignment_batch_size": 200,
// Heart beat detection
"lower_freqency_bandpass": 5.0, // Hz
"upper_freqency_bandpass": 14.0, // Hz
"heartbeat_filtfilt_chuck_size": 10,
// LED Ramp on
"skip_frames_in_the_beginning": 100, // Frames
// PyTorch
"dtype": "float32",
"force_to_cpu": false
}

View file

@ -1,6 +1,4 @@
import json
import os
from jsmin import jsmin # type: ignore
import torch
import numpy as np
@ -12,14 +10,13 @@ from functions.bandpass import bandpass
from functions.create_logger import create_logger
from functions.load_meta_data import load_meta_data
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_1"
)
mylogger.info("loading config file")
with open("config.json", "r") as file:
config = json.loads(jsmin(file.read()))
config = load_config(mylogger=mylogger)
device = get_torch_device(mylogger, config["force_to_cpu"])

View file

@ -3,23 +3,19 @@ import matplotlib
import numpy as np
import torch
import os
import json
from jsmin import jsmin # type:ignore
from matplotlib.widgets import Slider, Button # type:ignore
from functools import partial
from functions.gauss_smear_individual import gauss_smear_individual
from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_2"
)
mylogger.info("loading config file")
with open("config.json", "r") as file:
config = json.loads(jsmin(file.read()))
config = load_config(mylogger=mylogger)
path: str = config["ref_image_path"]
use_channel: str = "donor"

View file

@ -1,5 +1,4 @@
import os
import json
import numpy as np
import matplotlib.pyplot as plt # type:ignore
@ -9,9 +8,9 @@ from matplotlib.widgets import Button # type:ignore
# pip install roipoly
from roipoly import RoiPoly
from jsmin import jsmin # type:ignore
from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
def compose_image(image_3color: np.ndarray, mask: np.ndarray) -> np.ndarray:
@ -86,9 +85,7 @@ mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_3"
)
mylogger.info("loading config file")
with open("config.json", "r") as file:
config = json.loads(jsmin(file.read()))
config = load_config(mylogger=mylogger)
device = get_torch_device(mylogger, config["force_to_cpu"])
@ -158,7 +155,3 @@ mylogger.info("Display")
new_roi: RoiPoly = RoiPoly(ax=ax_main, color="r", close_fig=False, show_fig=False)
plt.show()
# image_handle.remove()
#

View file

@ -0,0 +1,619 @@
import numpy as np
import torch
import torchvision as tv # type: ignore
import os
import logging
from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
from functions.load_meta_data import load_meta_data
from functions.get_experiments import get_experiments
from functions.get_trials import get_trials
from functions.get_parts import get_parts
from functions.binning import binning
from functions.ImageAlignment import ImageAlignment
from functions.align_refref import align_refref
from functions.perform_donor_volume_rotation import perform_donor_volume_rotation
from functions.perform_donor_volume_translation import perform_donor_volume_translation
from functions.bandpass import bandpass
import matplotlib.pyplot as plt
@torch.no_grad()
def process_trial(
config: dict,
mylogger: logging.Logger,
experiment_id: int,
trial_id: int,
device: torch.device,
):
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
cuda_total_memory: int = torch.cuda.get_device_properties(
device.index
).total_memory
else:
cuda_total_memory = 0
raw_data_path: str = os.path.join(
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
if os.path.isdir(raw_data_path) is False:
mylogger.info(f"ERROR: could not find raw directory {raw_data_path}!!!!")
return
if (torch.where(get_experiments(raw_data_path) == experiment_id)[0].shape[0]) != 1:
mylogger.info(f"ERROR: could not find experiment id {experiment_id}!!!!")
return
if (
torch.where(get_trials(raw_data_path, experiment_id) == trial_id)[0].shape[0]
) != 1:
mylogger.info(f"ERROR: could not find trial id {trial_id}!!!!")
return
if get_parts(raw_data_path, experiment_id, trial_id).shape[0] != 1:
mylogger.info("ERROR: this has more than one part. NOT IMPLEMENTED YET!!!!")
assert get_parts(raw_data_path, experiment_id, trial_id).shape[0] == 1
part_id: int = 1
experiment_name = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
mylogger.info(f"Will work on: {experiment_name}")
filename_data: str = os.path.join(
raw_data_path,
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}.npy",
)
mylogger.info(f"Will use: {filename_data} for data")
filename_meta: str = os.path.join(
raw_data_path,
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}_meta.txt",
)
mylogger.info(f"Will use: {filename_meta} for meta data")
if os.path.isfile(filename_meta) is False:
mylogger.info(f"Could not load meta data... {filename_meta}")
mylogger.info(f"ERROR: skipping {experiment_name}!!!!")
return
meta_channels: list[str]
meta_mouse_markings: str
meta_recording_date: str
meta_stimulation_times: dict
meta_experiment_names: dict
meta_trial_recording_duration: float
meta_frame_time: float
meta_mouse: str
(
meta_channels,
meta_mouse_markings,
meta_recording_date,
meta_stimulation_times,
meta_experiment_names,
meta_trial_recording_duration,
meta_frame_time,
meta_mouse,
) = load_meta_data(mylogger=mylogger, filename_meta=filename_meta)
dtype_str = config["dtype"]
mylogger.info(f"Data precision will be {dtype_str}")
dtype: torch.dtype = getattr(torch, dtype_str)
dtype_np: np.dtype = getattr(np, dtype_str)
mylogger.info("Loading raw data")
if device != torch.device("cpu"):
free_mem: int = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory before loading RAW data: {free_mem//1024} MByte")
data_np: np.ndarray = np.load(filename_data, mmap_mode="r").astype(dtype_np)
data: torch.Tensor = torch.zeros(data_np.shape, dtype=dtype, device=device)
for i in range(0, len(config["required_order"])):
mylogger.info(f"Move raw data to PyTorch device: {config['required_order'][i]}")
idx = meta_channels.index(config["required_order"][i])
data[..., i] = torch.tensor(data_np[..., idx], dtype=dtype, device=device)
if device != torch.device("cpu"):
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory after loading RAW data: {free_mem//1024} MByte")
del data_np
mylogger.info(f"Data shape: {data.shape}")
mylogger.info("-==- Done -==-")
mylogger.info("Reference images and mask")
ref_image_path: str = config["ref_image_path"]
ref_image_path_acceptor: str = os.path.join(ref_image_path, "acceptor.npy")
if os.path.isfile(ref_image_path_acceptor) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_acceptor}")
return
mylogger.info(f"Loading ref file data: {ref_image_path_acceptor}")
ref_image_acceptor: torch.Tensor = torch.tensor(
np.load(ref_image_path_acceptor).astype(dtype_np), dtype=dtype, device=device
)
ref_image_path_donor: str = os.path.join(ref_image_path, "donor.npy")
if os.path.isfile(ref_image_path_donor) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_donor}")
return
mylogger.info(f"Loading ref file data: {ref_image_path_donor}")
ref_image_donor: torch.Tensor = torch.tensor(
np.load(ref_image_path_donor).astype(dtype_np), dtype=dtype, device=device
)
ref_image_path_oxygenation: str = os.path.join(ref_image_path, "oxygenation.npy")
if os.path.isfile(ref_image_path_oxygenation) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_oxygenation}")
return
mylogger.info(f"Loading ref file data: {ref_image_path_oxygenation}")
ref_image_oxygenation: torch.Tensor = torch.tensor(
np.load(ref_image_path_oxygenation).astype(dtype_np), dtype=dtype, device=device
)
ref_image_path_volume: str = os.path.join(ref_image_path, "volume.npy")
if os.path.isfile(ref_image_path_volume) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_volume}")
return
mylogger.info(f"Loading ref file data: {ref_image_path_volume}")
ref_image_volume: torch.Tensor = torch.tensor(
np.load(ref_image_path_volume).astype(dtype_np), dtype=dtype, device=device
)
refined_mask_file: str = os.path.join(ref_image_path, "mask_not_rotated.npy")
if os.path.isfile(refined_mask_file) is False:
mylogger.info(f"Could not load mask file: {refined_mask_file}")
return
mylogger.info(f"Loading mask file data: {refined_mask_file}")
mask: torch.Tensor = torch.tensor(
np.load(refined_mask_file).astype(dtype_np), dtype=dtype, device=device
)
mylogger.info("-==- Done -==-")
if config["binning_enable"] and config["binning_before_alignment"]:
mylogger.info("Binning of data")
mylogger.info(
(
f"kernel_size={int(config['binning_kernel_size'])},"
f"stride={int(config['binning_stride'])},"
f"divisor_override={int(config['binning_divisor_override'])}"
)
)
data = binning(
data,
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
ref_image_acceptor = (
binning(
ref_image_acceptor.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
ref_image_donor = (
binning(
ref_image_donor.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
ref_image_oxygenation = (
binning(
ref_image_oxygenation.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
ref_image_volume = (
binning(
ref_image_volume.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
mask = (
binning(
mask.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
mylogger.info(f"Data shape: {data.shape}")
mylogger.info("-==- Done -==-")
mylogger.info("Preparing alignment")
image_alignment = ImageAlignment(default_dtype=dtype, device=device)
mylogger.info("Re-order Raw data")
data = data.moveaxis(-2, 0).moveaxis(-1, 0)
mylogger.info(f"Data shape: {data.shape}")
mylogger.info("-==- Done -==-")
mylogger.info("Alignment of the ref images and the mask")
mylogger.info("Ref image of donor stays fixed.")
mylogger.info("Ref image of volume and the mask doesn't need to be touched")
mylogger.info("Calculate translation and rotation between the reference images")
angle_refref, tvec_refref, ref_image_acceptor, ref_image_donor = align_refref(
mylogger=mylogger,
ref_image_acceptor=ref_image_acceptor,
ref_image_donor=ref_image_donor,
image_alignment=image_alignment,
batch_size=config["alignment_batch_size"],
fill_value=-1.0,
)
mylogger.info(f"Rotation: {round(float(angle_refref[0]),2)} degree")
mylogger.info(
f"Translation: {round(float(tvec_refref[0]),1)} x {round(float(tvec_refref[1]),1)} pixel"
)
temp_path: str = os.path.join(
config["export_path"], experiment_name + "_angle_refref.npy"
)
mylogger.info(f"Save angle to {temp_path}")
np.save(temp_path, angle_refref.cpu())
temp_path = os.path.join(
config["export_path"], experiment_name + "_tvec_refref.npy"
)
mylogger.info(f"Save translation vector to {temp_path}")
np.save(temp_path, tvec_refref.cpu())
mylogger.info("Moving & rotating the oxygenation ref image")
ref_image_oxygenation = tv.transforms.functional.affine(
img=ref_image_oxygenation.unsqueeze(0),
angle=-float(angle_refref),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-1.0,
)
ref_image_oxygenation = tv.transforms.functional.affine(
img=ref_image_oxygenation,
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-1.0,
).squeeze(0)
mylogger.info("-==- Done -==-")
mylogger.info("Rotate and translate the acceptor and oxygenation data accordingly")
acceptor_index: int = config["required_order"].index("acceptor")
donor_index: int = config["required_order"].index("donor")
oxygenation_index: int = config["required_order"].index("oxygenation")
volume_index: int = config["required_order"].index("volume")
mylogger.info("Rotate acceptor")
data[acceptor_index, ...] = tv.transforms.functional.affine(
img=data[acceptor_index, ...],
angle=-float(angle_refref),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-1.0,
)
mylogger.info("Translate acceptor")
data[acceptor_index, ...] = tv.transforms.functional.affine(
img=data[acceptor_index, ...],
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-1.0,
)
mylogger.info("Rotate oxygenation")
data[oxygenation_index, ...] = tv.transforms.functional.affine(
img=data[oxygenation_index, ...],
angle=-float(angle_refref),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-1.0,
)
mylogger.info("Translate oxygenation")
data[oxygenation_index, ...] = tv.transforms.functional.affine(
img=data[oxygenation_index, ...],
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-1.0,
)
mylogger.info("-==- Done -==-")
mylogger.info("Perform rotation between donor and volume and its ref images")
mylogger.info("for all frames and then rotate all the data accordingly")
perform_donor_volume_rotation
(
data[acceptor_index, ...],
data[donor_index, ...],
data[oxygenation_index, ...],
data[volume_index, ...],
angle_donor_volume,
) = perform_donor_volume_rotation(
mylogger=mylogger,
acceptor=data[acceptor_index, ...],
donor=data[donor_index, ...],
oxygenation=data[oxygenation_index, ...],
volume=data[volume_index, ...],
ref_image_donor=ref_image_donor,
ref_image_volume=ref_image_volume,
image_alignment=image_alignment,
batch_size=config["alignment_batch_size"],
fill_value=-1.0,
)
mylogger.info(
f"angles: "
f"min {round(float(angle_donor_volume.min()),2)} "
f"max {round(float(angle_donor_volume.max()),2)} "
f"mean {round(float(angle_donor_volume.mean()),2)} "
)
temp_path = os.path.join(
config["export_path"], experiment_name + "_angle_donor_volume.npy"
)
mylogger.info(f"Save angles to {temp_path}")
np.save(temp_path, angle_donor_volume.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Perform translation between donor and volume and its ref images")
mylogger.info("for all frames and then translate all the data accordingly")
(
data[acceptor_index, ...],
data[donor_index, ...],
data[oxygenation_index, ...],
data[volume_index, ...],
tvec_donor_volume,
) = perform_donor_volume_translation(
mylogger=mylogger,
acceptor=data[acceptor_index, ...],
donor=data[donor_index, ...],
oxygenation=data[oxygenation_index, ...],
volume=data[volume_index, ...],
ref_image_donor=ref_image_donor,
ref_image_volume=ref_image_volume,
image_alignment=image_alignment,
batch_size=config["alignment_batch_size"],
fill_value=-1.0,
)
mylogger.info(
f"translation dim 0: "
f"min {round(float(tvec_donor_volume[:,0].min()),1)} "
f"max {round(float(tvec_donor_volume[:,0].max()),1)} "
f"mean {round(float(tvec_donor_volume[:,0].mean()),1)} "
)
mylogger.info(
f"translation dim 1: "
f"min {round(float(tvec_donor_volume[:,1].min()),1)} "
f"max {round(float(tvec_donor_volume[:,1].max()),1)} "
f"mean {round(float(tvec_donor_volume[:,1].mean()),1)} "
)
temp_path = os.path.join(
config["export_path"], experiment_name + "_tvec_donor_volume.npy"
)
mylogger.info(f"Save translation vector to {temp_path}")
np.save(temp_path, tvec_donor_volume.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Update mask with the new regions due to alignment")
new_mask_area: torch.Tensor = torch.any(torch.any(data < -0.1, dim=0), dim=0).bool()
mask = (mask == 0).bool()
mask = torch.logical_or(mask, new_mask_area)
mask_positve: torch.Tensor = torch.logical_not(mask)
mylogger.info("Update the data with the new mask")
data *= mask_positve.unsqueeze(0).unsqueeze(0).type(dtype=dtype)
mylogger.info("-==- Done -==-")
mylogger.info("Interpolate the 'in-between' frames for oxygenation and volume")
data[oxygenation_index, 1:, ...] = (
data[oxygenation_index, 1:, ...] + data[oxygenation_index, :-1, ...]
) / 2.0
data[volume_index, 1:, ...] = (
data[volume_index, 1:, ...] + data[volume_index, :-1, ...]
) / 2.0
mylogger.info("-==- Done -==-")
sample_frequency: float = 1.0 / meta_frame_time
mylogger.info("Extract heartbeat from volume signal")
heartbeat_ts: torch.Tensor = bandpass(
data=data[volume_index, ...].movedim(0, -1).clone(),
device=data.device,
low_frequency=config["lower_freqency_bandpass"],
high_frequency=config["upper_freqency_bandpass"],
fs=sample_frequency,
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
)
heartbeat_ts = heartbeat_ts.flatten(start_dim=0, end_dim=-2)
mask_flatten: torch.Tensor = mask_positve.flatten(start_dim=0, end_dim=-1)
heartbeat_ts = heartbeat_ts[mask_flatten, :]
heartbeat_ts = heartbeat_ts.movedim(0, -1)
heartbeat_ts -= heartbeat_ts.mean(dim=0, keepdim=True)
volume_heartbeat, _, _ = torch.linalg.svd(heartbeat_ts, full_matrices=False)
volume_heartbeat = volume_heartbeat[:, 0]
volume_heartbeat -= volume_heartbeat[
config["skip_frames_in_the_beginning"] :
].mean()
del heartbeat_ts
temp_path = os.path.join(
config["export_path"], experiment_name + "_volume_heartbeat.npy"
)
mylogger.info(f"Save volume heartbeat to {temp_path}")
np.save(temp_path, volume_heartbeat.cpu())
mylogger.info("-==- Done -==-")
volume_heartbeat = volume_heartbeat.unsqueeze(0).unsqueeze(0)
norm_volume_heartbeat = (
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] ** 2
).sum(dim=-1)
heartbeat_coefficients: torch.Tensor = torch.zeros(
(data.shape[0], data.shape[-2], data.shape[-1]),
dtype=data.dtype,
device=data.device,
)
for i in range(0, data.shape[0]):
y = bandpass(
data=data[i, ...].movedim(0, -1).clone(),
device=data.device,
low_frequency=config["lower_freqency_bandpass"],
high_frequency=config["upper_freqency_bandpass"],
fs=sample_frequency,
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
)[..., config["skip_frames_in_the_beginning"] :]
y -= y.mean(dim=-1, keepdim=True)
heartbeat_coefficients[i, ...] = (
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] * y
).sum(dim=-1) / norm_volume_heartbeat
heartbeat_coefficients[i, ...] *= mask_positve.type(
dtype=heartbeat_coefficients.dtype
)
del y
temp_path = os.path.join(
config["export_path"], experiment_name + "_heartbeat_coefficients.npy"
)
mylogger.info(f"Save heartbeat coefficients to {temp_path}")
np.save(temp_path, heartbeat_coefficients.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Remove heart beat from data")
data -= heartbeat_coefficients.unsqueeze(1) * volume_heartbeat.unsqueeze(0).movedim(
-1, 1
)
mylogger.info("-==- Done -==-")
donor_heartbeat_factor = heartbeat_coefficients[donor_index, ...].clone()
acceptor_heartbeat_factor = heartbeat_coefficients[acceptor_index, ...].clone()
del heartbeat_coefficients
mylogger.info("Calculate scaling factor for donor and acceptor")
donor_factor: torch.Tensor = (
donor_heartbeat_factor + acceptor_heartbeat_factor
) / (2 * donor_heartbeat_factor)
acceptor_factor: torch.Tensor = (
donor_heartbeat_factor + acceptor_heartbeat_factor
) / (2 * acceptor_heartbeat_factor)
del donor_heartbeat_factor
del acceptor_heartbeat_factor
temp_path = os.path.join(
config["export_path"], experiment_name + "_donor_factor.npy"
)
mylogger.info(f"Save donor factor to {temp_path}")
np.save(temp_path, donor_factor.cpu())
temp_path = os.path.join(
config["export_path"], experiment_name + "_acceptor_factor.npy"
)
mylogger.info(f"Save acceptor factor to {temp_path}")
np.save(temp_path, acceptor_factor.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Scale acceptor to heart beat amplitude")
mylogger.info("Calculate mean")
mean_values_acceptor = data[
acceptor_index, config["skip_frames_in_the_beginning"] :, ...
].nanmean(dim=0, keepdim=True)
mylogger.info("Remove mean")
data[acceptor_index, ...] -= mean_values_acceptor
mylogger.info("Apply acceptor_factor and mask")
data[acceptor_index, ...] *= acceptor_factor.unsqueeze(0) * mask.unsqueeze(0)
mylogger.info("Add mean")
data[acceptor_index, ...] += mean_values_acceptor
mylogger.info("-==- Done -==-")
mylogger.info("Scale donor to heart beat amplitude")
mylogger.info("Calculate mean")
mean_values_donor = data[
donor_index, config["skip_frames_in_the_beginning"] :, ...
].nanmean(dim=0, keepdim=True)
mylogger.info("Remove mean")
data[donor_index, ...] -= mean_values_donor
mylogger.info("Apply donor_factor and mask")
data[donor_index, ...] *= donor_factor.unsqueeze(0) * mask.unsqueeze(0)
mylogger.info("Add mean")
data[donor_index, ...] += mean_values_donor
mylogger.info("-==- Done -==-")
exit()
return
mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_4"
)
config = load_config(mylogger=mylogger)
device = get_torch_device(mylogger, config["force_to_cpu"])
mylogger.info(f"Create directory {config['export_path']} in the case it does not exist")
os.makedirs(config["export_path"], exist_ok=True)
process_trial(
config=config, mylogger=mylogger, experiment_id=1, trial_id=1, device=device
)