Add files via upload

This commit is contained in:
David Rotermund 2024-02-28 16:15:22 +01:00 committed by GitHub
parent 84c254ae76
commit 77dc69eb13
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 1416 additions and 0 deletions

62
config.json Normal file
View file

@ -0,0 +1,62 @@
{
"basic_path": "/data_1/hendrik",
"recoding_data": "2021-06-17",
"mouse_identifier": "M3859M",
//"basic_path": "/data_1/robert",
//"recoding_data": "2021-10-05",
//"mouse_identifier": "M3879M",
"raw_path": "raw",
"export_path": "output",
"ref_image_path": "ref_images",
// Ratio Sequence
"classical_ratio_mode": true, // true: a/d false: 1+a-d
// Regression
"target_camera_acceptor": "acceptor",
"regressor_cameras_acceptor": [
"oxygenation",
"volume"
],
"target_camera_donor": "donor",
"regressor_cameras_donor": [
"oxygenation",
"volume"
],
// binning
"binning_enable": true,
"binning_at_the_end": false,
"binning_kernel_size": 4,
"binning_stride": 4,
"binning_divisor_override": 1,
// alignment
"alignment_batch_size": 200,
"rotation_stabilization_threshold_factor": 3.0, // >= 1.0
"rotation_stabilization_threshold_border": 0.9, // <= 1.0
// Heart beat detection
"lower_freqency_bandpass": 5.0, // Hz
"upper_freqency_bandpass": 14.0, // Hz
"heartbeat_filtfilt_chuck_size": 10,
// Gauss smear
"gauss_smear_spatial_width": 8,
"gauss_smear_temporal_width": 0.1,
"gauss_smear_use_matlab_mask": false,
// LED Ramp on
"skip_frames_in_the_beginning": 100, // Frames
// PyTorch
"dtype": "float32",
"force_to_cpu": false,
// Save
"save_as_python": true, // produces .npz files (compressed)
"save_as_matlab": false, // produces .hd5 file (compressed)
// Save extra information
"save_alignment": false,
"save_heartbeat": false,
"save_factors": false,
"save_regression_coefficients": false,
// Not important parameter
"required_order": [
"acceptor",
"donor",
"oxygenation",
"volume"
]
}

126
stage_1_get_ref_image.py Normal file
View file

@ -0,0 +1,126 @@
import os
import torch
import numpy as np
from functions.get_experiments import get_experiments
from functions.get_trials import get_trials
from functions.bandpass import bandpass
from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
from functions.data_raw_loader import data_raw_loader
mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_1"
)
config = load_config(mylogger=mylogger)
if config["binning_enable"] and (config["binning_at_the_end"] is False):
device: torch.device = torch.device("cpu")
else:
device = get_torch_device(mylogger, config["force_to_cpu"])
dtype_str: str = config["dtype"]
dtype: torch.dtype = getattr(torch, dtype_str)
raw_data_path: str = os.path.join(
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
mylogger.info(f"Using data path: {raw_data_path}")
first_experiment_id: int = int(get_experiments(raw_data_path).min())
first_trial_id: int = int(get_trials(raw_data_path, first_experiment_id).min())
meta_channels: list[str]
meta_mouse_markings: str
meta_recording_date: str
meta_stimulation_times: dict
meta_experiment_names: dict
meta_trial_recording_duration: float
meta_frame_time: float
meta_mouse: str
data: torch.Tensor
if config["binning_enable"] and (config["binning_at_the_end"] is False):
force_to_cpu_memory: bool = True
else:
force_to_cpu_memory = False
mylogger.info("Loading data")
(
meta_channels,
meta_mouse_markings,
meta_recording_date,
meta_stimulation_times,
meta_experiment_names,
meta_trial_recording_duration,
meta_frame_time,
meta_mouse,
data,
) = data_raw_loader(
raw_data_path=raw_data_path,
mylogger=mylogger,
experiment_id=first_experiment_id,
trial_id=first_trial_id,
device=device,
force_to_cpu_memory=force_to_cpu_memory,
config=config,
)
mylogger.info("-==- Done -==-")
output_path = config["ref_image_path"]
mylogger.info(f"Create directory {output_path} in the case it does not exist")
os.makedirs(output_path, exist_ok=True)
mylogger.info("Reference images")
for i in range(0, len(meta_channels)):
temp_path: str = os.path.join(output_path, meta_channels[i] + ".npy")
mylogger.info(f"Extract and save: {temp_path}")
frame_id: int = data.shape[-2] // 2
mylogger.info(f"Will use frame id: {frame_id}")
ref_image: np.ndarray = (
data[:, :, frame_id, meta_channels.index(meta_channels[i])]
.clone()
.cpu()
.numpy()
)
np.save(temp_path, ref_image)
mylogger.info("-==- Done -==-")
sample_frequency: float = 1.0 / meta_frame_time
mylogger.info(
(
f"Heartbeat power {config['lower_freqency_bandpass']} Hz"
f" - {config['upper_freqency_bandpass']} Hz,"
f" sample-rate: {sample_frequency},"
f" skipping the first {config['skip_frames_in_the_beginning']} frames"
)
)
for i in range(0, len(meta_channels)):
temp_path = os.path.join(output_path, meta_channels[i] + "_var.npy")
mylogger.info(f"Extract and save: {temp_path}")
heartbeat_ts: torch.Tensor = bandpass(
data=data[..., i],
device=data.device,
low_frequency=config["lower_freqency_bandpass"],
high_frequency=config["upper_freqency_bandpass"],
fs=sample_frequency,
filtfilt_chuck_size=10,
)
heartbeat_power = heartbeat_ts[..., config["skip_frames_in_the_beginning"] :].var(
dim=-1
)
np.save(temp_path, heartbeat_power)
mylogger.info("-==- Done -==-")

View file

@ -0,0 +1,153 @@
import matplotlib.pyplot as plt # type:ignore
import matplotlib
import numpy as np
import torch
import os
from matplotlib.widgets import Slider, Button # type:ignore
from functools import partial
from functions.gauss_smear_individual import gauss_smear_individual
from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_2"
)
config = load_config(mylogger=mylogger)
path: str = config["ref_image_path"]
use_channel: str = "donor"
spatial_width: float = 4.0
temporal_width: float = 0.1
threshold: float = 0.05
heartbeat_mask_threshold_file: str = os.path.join(path, "heartbeat_mask_threshold.npy")
if os.path.isfile(heartbeat_mask_threshold_file):
mylogger.info(f"loading previous threshold file: {heartbeat_mask_threshold_file}")
threshold = float(np.load(heartbeat_mask_threshold_file)[0])
mylogger.info(f"initial threshold is {threshold}")
image_ref_file: str = os.path.join(path, use_channel + ".npy")
image_var_file: str = os.path.join(path, use_channel + "_var.npy")
heartbeat_mask_file: str = os.path.join(path, "heartbeat_mask.npy")
device = get_torch_device(mylogger, config["force_to_cpu"])
def next_frame(
i: float, images: np.ndarray, image_handle: matplotlib.image.AxesImage
) -> None:
global threshold
threshold = i
display_image: np.ndarray = images.copy()
display_image[..., 2] = display_image[..., 0]
mask: np.ndarray = np.where(images[..., 2] >= i, 1.0, np.nan)[..., np.newaxis]
display_image *= mask
display_image = np.nan_to_num(display_image, nan=1.0)
image_handle.set_data(display_image)
return
def on_clicked_accept(event: matplotlib.backend_bases.MouseEvent) -> None:
global threshold
global image_3color
global path
global mylogger
global heartbeat_mask_file
global heartbeat_mask_threshold_file
mylogger.info(f"Threshold: {threshold}")
mask: np.ndarray = image_3color[..., 2] >= threshold
mylogger.info(f"Save mask to: {heartbeat_mask_file}")
np.save(heartbeat_mask_file, mask)
mylogger.info(f"Save threshold to: {heartbeat_mask_threshold_file}")
np.save(heartbeat_mask_threshold_file, np.array([threshold]))
exit()
def on_clicked_cancel(event: matplotlib.backend_bases.MouseEvent) -> None:
exit()
mylogger.info(f"loading image reference file: {image_ref_file}")
image_ref: np.ndarray = np.load(image_ref_file)
image_ref /= image_ref.max()
mylogger.info(f"loading image heartbeat power: {image_var_file}")
image_var: np.ndarray = np.load(image_var_file)
image_var /= image_var.max()
mylogger.info("Smear the image heartbeat power patially")
temp, _ = gauss_smear_individual(
input=torch.tensor(image_var[..., np.newaxis], device=device),
spatial_width=spatial_width,
temporal_width=temporal_width,
use_matlab_mask=False,
)
temp /= temp.max()
mylogger.info("-==- DONE -==-")
image_3color = np.concatenate(
(
np.zeros_like(image_ref[..., np.newaxis]),
image_ref[..., np.newaxis],
temp.cpu().numpy(),
),
axis=-1,
)
mylogger.info("Prepare image")
display_image = image_3color.copy()
display_image[..., 2] = display_image[..., 0]
mask = np.where(image_3color[..., 2] >= threshold, 1.0, np.nan)[..., np.newaxis]
display_image *= mask
display_image = np.nan_to_num(display_image, nan=1.0)
value_sort = np.sort(image_var.flatten())
value_sort_max = value_sort[int(value_sort.shape[0] * 0.95)]
mylogger.info("-==- DONE -==-")
mylogger.info("Create figure")
fig: matplotlib.figure.Figure = plt.figure()
image_handle = plt.imshow(display_image, vmin=0, vmax=1, cmap="hot")
mylogger.info("Add controls")
axfreq = fig.add_axes(rect=(0.4, 0.9, 0.3, 0.03))
slice_slider = Slider(
ax=axfreq,
label="Threshold",
valmin=0,
valmax=value_sort_max,
valinit=threshold,
valstep=value_sort_max / 100.0,
)
axbutton_accept = fig.add_axes(rect=(0.3, 0.85, 0.2, 0.04))
button_accept = Button(
ax=axbutton_accept, label="Accept", image=None, color="0.85", hovercolor="0.95"
)
button_accept.on_clicked(on_clicked_accept) # type: ignore
axbutton_cancel = fig.add_axes(rect=(0.55, 0.85, 0.2, 0.04))
button_cancel = Button(
ax=axbutton_cancel, label="Cancel", image=None, color="0.85", hovercolor="0.95"
)
button_cancel.on_clicked(on_clicked_cancel) # type: ignore
slice_slider.on_changed(
partial(next_frame, images=image_3color, image_handle=image_handle)
)
mylogger.info("Display")
plt.show()

157
stage_3_refine_mask.py Normal file
View file

@ -0,0 +1,157 @@
import os
import numpy as np
import matplotlib.pyplot as plt # type:ignore
import matplotlib
from matplotlib.widgets import Button # type:ignore
# pip install roipoly
from roipoly import RoiPoly # type:ignore
from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
def compose_image(image_3color: np.ndarray, mask: np.ndarray) -> np.ndarray:
display_image = image_3color.copy()
display_image[..., 2] = display_image[..., 0]
display_image[mask == 0, :] = 1.0
return display_image
def on_clicked_accept(event: matplotlib.backend_bases.MouseEvent) -> None:
global mylogger
global refined_mask_file
global mask
mylogger.info(f"Save mask to: {refined_mask_file}")
np.save(refined_mask_file, mask)
exit()
def on_clicked_cancel(event: matplotlib.backend_bases.MouseEvent) -> None:
global mylogger
mylogger.info("Ended without saving the mask")
exit()
def on_clicked_add(event: matplotlib.backend_bases.MouseEvent) -> None:
global new_roi
global mask
global image_3color
global display_image
global mylogger
if len(new_roi.x) > 0:
mylogger.info("A ROI with the following coordiantes has been added to the mask")
for i in range(0, len(new_roi.x)):
mylogger.info(f"{round(new_roi.x[i],1)} x {round(new_roi.y[i],1)}")
mylogger.info("")
new_mask = new_roi.get_mask(display_image[:, :, 0])
mask[new_mask] = 0.0
display_image = compose_image(image_3color=image_3color, mask=mask)
image_handle.set_data(display_image)
for line in ax_main.lines:
line.remove()
plt.draw()
new_roi = RoiPoly(ax=ax_main, color="r", close_fig=False, show_fig=False)
def on_clicked_remove(event: matplotlib.backend_bases.MouseEvent) -> None:
global new_roi
global mask
global image_3color
global display_image
if len(new_roi.x) > 0:
mylogger.info(
"A ROI with the following coordiantes has been removed from the mask"
)
for i in range(0, len(new_roi.x)):
mylogger.info(f"{round(new_roi.x[i],1)} x {round(new_roi.y[i],1)}")
mylogger.info("")
new_mask = new_roi.get_mask(display_image[:, :, 0])
mask[new_mask] = 1.0
display_image = compose_image(image_3color=image_3color, mask=mask)
image_handle.set_data(display_image)
for line in ax_main.lines:
line.remove()
plt.draw()
new_roi = RoiPoly(ax=ax_main, color="r", close_fig=False, show_fig=False)
mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_3"
)
config = load_config(mylogger=mylogger)
device = get_torch_device(mylogger, config["force_to_cpu"])
path: str = config["ref_image_path"]
use_channel: str = "donor"
image_ref_file: str = os.path.join(path, use_channel + ".npy")
heartbeat_mask_file: str = os.path.join(path, "heartbeat_mask.npy")
refined_mask_file: str = os.path.join(path, "mask_not_rotated.npy")
mylogger.info(f"loading image reference file: {image_ref_file}")
image_ref: np.ndarray = np.load(image_ref_file)
image_ref /= image_ref.max()
mylogger.info(f"loading heartbeat mask: {heartbeat_mask_file}")
mask: np.ndarray = np.load(heartbeat_mask_file)
image_3color = np.concatenate(
(
np.zeros_like(image_ref[..., np.newaxis]),
image_ref[..., np.newaxis],
np.zeros_like(image_ref[..., np.newaxis]),
),
axis=-1,
)
mylogger.info("-==- DONE -==-")
fig, ax_main = plt.subplots()
display_image = compose_image(image_3color=image_3color, mask=mask)
image_handle = ax_main.imshow(display_image, vmin=0, vmax=1, cmap="hot")
mylogger.info("Add controls")
axbutton_accept = fig.add_axes(rect=(0.3, 0.85, 0.2, 0.04))
button_accept = Button(
ax=axbutton_accept, label="Accept", image=None, color="0.85", hovercolor="0.95"
)
button_accept.on_clicked(on_clicked_accept) # type: ignore
axbutton_cancel = fig.add_axes(rect=(0.5, 0.85, 0.2, 0.04))
button_cancel = Button(
ax=axbutton_cancel, label="Cancel", image=None, color="0.85", hovercolor="0.95"
)
button_cancel.on_clicked(on_clicked_cancel) # type: ignore
axbutton_addmask = fig.add_axes(rect=(0.3, 0.9, 0.2, 0.04))
button_addmask = Button(
ax=axbutton_addmask, label="Add mask", image=None, color="0.85", hovercolor="0.95"
)
button_addmask.on_clicked(on_clicked_add) # type: ignore
axbutton_removemask = fig.add_axes(rect=(0.5, 0.9, 0.2, 0.04))
button_removemask = Button(
ax=axbutton_removemask,
label="Remove mask",
image=None,
color="0.85",
hovercolor="0.95",
)
button_removemask.on_clicked(on_clicked_remove) # type: ignore
# ax_main.cla()
mylogger.info("Display")
new_roi: RoiPoly = RoiPoly(ax=ax_main, color="r", close_fig=False, show_fig=False)
plt.show()

918
stage_4_process.py Normal file
View file

@ -0,0 +1,918 @@
import numpy as np
import torch
import torchvision as tv # type: ignore
import os
import logging
import h5py # type: ignore
from functions.create_logger import create_logger
from functions.get_torch_device import get_torch_device
from functions.load_config import load_config
from functions.get_experiments import get_experiments
from functions.get_trials import get_trials
from functions.binning import binning
from functions.ImageAlignment import ImageAlignment
from functions.align_refref import align_refref
from functions.perform_donor_volume_rotation import perform_donor_volume_rotation
from functions.perform_donor_volume_translation import perform_donor_volume_translation
from functions.bandpass import bandpass
from functions.gauss_smear_individual import gauss_smear_individual
from functions.regression import regression
from functions.data_raw_loader import data_raw_loader
@torch.no_grad()
def process_trial(
config: dict,
mylogger: logging.Logger,
experiment_id: int,
trial_id: int,
device: torch.device,
):
mylogger.info("")
mylogger.info("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
mylogger.info("~ TRIAL START ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
mylogger.info("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
mylogger.info("")
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
cuda_total_memory: int = torch.cuda.get_device_properties(
device.index
).total_memory
else:
cuda_total_memory = 0
raw_data_path: str = os.path.join(
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
if config["binning_enable"] and (config["binning_at_the_end"] is False):
force_to_cpu_memory: bool = True
else:
force_to_cpu_memory = False
meta_channels: list[str]
meta_mouse_markings: str
meta_recording_date: str
meta_stimulation_times: dict
meta_experiment_names: dict
meta_trial_recording_duration: float
meta_frame_time: float
meta_mouse: str
data: torch.Tensor
(
meta_channels,
meta_mouse_markings,
meta_recording_date,
meta_stimulation_times,
meta_experiment_names,
meta_trial_recording_duration,
meta_frame_time,
meta_mouse,
data,
) = data_raw_loader(
raw_data_path=raw_data_path,
mylogger=mylogger,
experiment_id=experiment_id,
trial_id=trial_id,
device=device,
force_to_cpu_memory=force_to_cpu_memory,
config=config,
)
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
dtype_str = config["dtype"]
dtype_np: np.dtype = getattr(np, dtype_str)
dtype: torch.dtype = data.dtype
if device != torch.device("cpu"):
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info(f"Data shape: {data.shape}")
mylogger.info("-==- Done -==-")
mylogger.info("Finding limit values in the RAW data and mark them for masking")
limit: float = (2**16) - 1
for i in range(0, data.shape[3]):
zero_pixel_mask: torch.Tensor = torch.any(data[..., i] >= limit, dim=-1)
data[zero_pixel_mask, :, i] = -100.0
mylogger.info(
f"{meta_channels[i]}: "
f"found {int(zero_pixel_mask.type(dtype=dtype).sum())} pixel "
f"with limit values "
)
mylogger.info("-==- Done -==-")
mylogger.info("Reference images and mask")
ref_image_path: str = config["ref_image_path"]
ref_image_path_acceptor: str = os.path.join(ref_image_path, "acceptor.npy")
if os.path.isfile(ref_image_path_acceptor) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_acceptor}")
assert os.path.isfile(ref_image_path_acceptor)
return
mylogger.info(f"Loading ref file data: {ref_image_path_acceptor}")
ref_image_acceptor: torch.Tensor = torch.tensor(
np.load(ref_image_path_acceptor).astype(dtype_np), dtype=dtype, device=device
)
ref_image_path_donor: str = os.path.join(ref_image_path, "donor.npy")
if os.path.isfile(ref_image_path_donor) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_donor}")
assert os.path.isfile(ref_image_path_donor)
return
mylogger.info(f"Loading ref file data: {ref_image_path_donor}")
ref_image_donor: torch.Tensor = torch.tensor(
np.load(ref_image_path_donor).astype(dtype_np), dtype=dtype, device=device
)
ref_image_path_oxygenation: str = os.path.join(ref_image_path, "oxygenation.npy")
if os.path.isfile(ref_image_path_oxygenation) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_oxygenation}")
assert os.path.isfile(ref_image_path_oxygenation)
return
mylogger.info(f"Loading ref file data: {ref_image_path_oxygenation}")
ref_image_oxygenation: torch.Tensor = torch.tensor(
np.load(ref_image_path_oxygenation).astype(dtype_np), dtype=dtype, device=device
)
ref_image_path_volume: str = os.path.join(ref_image_path, "volume.npy")
if os.path.isfile(ref_image_path_volume) is False:
mylogger.info(f"Could not load ref file: {ref_image_path_volume}")
assert os.path.isfile(ref_image_path_volume)
return
mylogger.info(f"Loading ref file data: {ref_image_path_volume}")
ref_image_volume: torch.Tensor = torch.tensor(
np.load(ref_image_path_volume).astype(dtype_np), dtype=dtype, device=device
)
refined_mask_file: str = os.path.join(ref_image_path, "mask_not_rotated.npy")
if os.path.isfile(refined_mask_file) is False:
mylogger.info(f"Could not load mask file: {refined_mask_file}")
assert os.path.isfile(refined_mask_file)
return
mylogger.info(f"Loading mask file data: {refined_mask_file}")
mask: torch.Tensor = torch.tensor(
np.load(refined_mask_file).astype(dtype_np), dtype=dtype, device=device
)
mylogger.info("-==- Done -==-")
if config["binning_enable"] and (config["binning_at_the_end"] is False):
mylogger.info("Binning of data")
mylogger.info(
(
f"kernel_size={int(config['binning_kernel_size'])}, "
f"stride={int(config['binning_stride'])}, "
f"divisor_override={int(config['binning_divisor_override'])}"
)
)
data = binning(
data,
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
).to(device=device)
ref_image_acceptor = (
binning(
ref_image_acceptor.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
ref_image_donor = (
binning(
ref_image_donor.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
ref_image_oxygenation = (
binning(
ref_image_oxygenation.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
ref_image_volume = (
binning(
ref_image_volume.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
mask = (
binning(
mask.unsqueeze(-1).unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=int(config["binning_divisor_override"]),
)
.squeeze(-1)
.squeeze(-1)
)
mylogger.info(f"Data shape: {data.shape}")
mylogger.info("-==- Done -==-")
mylogger.info("Preparing alignment")
image_alignment = ImageAlignment(default_dtype=dtype, device=device)
mylogger.info("Re-order Raw data")
data = data.moveaxis(-2, 0).moveaxis(-1, 0)
mylogger.info(f"Data shape: {data.shape}")
mylogger.info("-==- Done -==-")
mylogger.info("Alignment of the ref images and the mask")
mylogger.info("Ref image of donor stays fixed.")
mylogger.info("Ref image of volume and the mask doesn't need to be touched")
mylogger.info("Calculate translation and rotation between the reference images")
angle_refref, tvec_refref, ref_image_acceptor, ref_image_donor = align_refref(
mylogger=mylogger,
ref_image_acceptor=ref_image_acceptor,
ref_image_donor=ref_image_donor,
image_alignment=image_alignment,
batch_size=config["alignment_batch_size"],
fill_value=-100.0,
)
mylogger.info(f"Rotation: {round(float(angle_refref[0]),2)} degree")
mylogger.info(
f"Translation: {round(float(tvec_refref[0]),1)} x {round(float(tvec_refref[1]),1)} pixel"
)
if config["save_alignment"]:
temp_path: str = os.path.join(
config["export_path"], experiment_name + "_angle_refref.npy"
)
mylogger.info(f"Save angle to {temp_path}")
np.save(temp_path, angle_refref.cpu())
temp_path = os.path.join(
config["export_path"], experiment_name + "_tvec_refref.npy"
)
mylogger.info(f"Save translation vector to {temp_path}")
np.save(temp_path, tvec_refref.cpu())
mylogger.info("Moving & rotating the oxygenation ref image")
ref_image_oxygenation = tv.transforms.functional.affine(
img=ref_image_oxygenation.unsqueeze(0),
angle=-float(angle_refref),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-100.0,
)
ref_image_oxygenation = tv.transforms.functional.affine(
img=ref_image_oxygenation,
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-100.0,
).squeeze(0)
mylogger.info("-==- Done -==-")
mylogger.info("Rotate and translate the acceptor and oxygenation data accordingly")
acceptor_index: int = config["required_order"].index("acceptor")
donor_index: int = config["required_order"].index("donor")
oxygenation_index: int = config["required_order"].index("oxygenation")
volume_index: int = config["required_order"].index("volume")
mylogger.info("Rotate acceptor")
data[acceptor_index, ...] = tv.transforms.functional.affine(
img=data[acceptor_index, ...],
angle=-float(angle_refref),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-100.0,
)
mylogger.info("Translate acceptor")
data[acceptor_index, ...] = tv.transforms.functional.affine(
img=data[acceptor_index, ...],
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-100.0,
)
mylogger.info("Rotate oxygenation")
data[oxygenation_index, ...] = tv.transforms.functional.affine(
img=data[oxygenation_index, ...],
angle=-float(angle_refref),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-100.0,
)
mylogger.info("Translate oxygenation")
data[oxygenation_index, ...] = tv.transforms.functional.affine(
img=data[oxygenation_index, ...],
angle=0,
translate=[tvec_refref[1], tvec_refref[0]],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=-100.0,
)
mylogger.info("-==- Done -==-")
mylogger.info("Perform rotation between donor and volume and its ref images")
mylogger.info("for all frames and then rotate all the data accordingly")
perform_donor_volume_rotation
(
data[acceptor_index, ...],
data[donor_index, ...],
data[oxygenation_index, ...],
data[volume_index, ...],
angle_donor_volume,
) = perform_donor_volume_rotation(
mylogger=mylogger,
acceptor=data[acceptor_index, ...],
donor=data[donor_index, ...],
oxygenation=data[oxygenation_index, ...],
volume=data[volume_index, ...],
ref_image_donor=ref_image_donor,
ref_image_volume=ref_image_volume,
image_alignment=image_alignment,
batch_size=config["alignment_batch_size"],
fill_value=-100.0,
config=config,
)
mylogger.info(
f"angles: "
f"min {round(float(angle_donor_volume.min()),2)} "
f"max {round(float(angle_donor_volume.max()),2)} "
f"mean {round(float(angle_donor_volume.mean()),2)} "
)
if config["save_alignment"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_angle_donor_volume.npy"
)
mylogger.info(f"Save angles to {temp_path}")
np.save(temp_path, angle_donor_volume.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Perform translation between donor and volume and its ref images")
mylogger.info("for all frames and then translate all the data accordingly")
(
data[acceptor_index, ...],
data[donor_index, ...],
data[oxygenation_index, ...],
data[volume_index, ...],
tvec_donor_volume,
) = perform_donor_volume_translation(
mylogger=mylogger,
acceptor=data[acceptor_index, ...],
donor=data[donor_index, ...],
oxygenation=data[oxygenation_index, ...],
volume=data[volume_index, ...],
ref_image_donor=ref_image_donor,
ref_image_volume=ref_image_volume,
image_alignment=image_alignment,
batch_size=config["alignment_batch_size"],
fill_value=-100.0,
config=config,
)
mylogger.info(
f"translation dim 0: "
f"min {round(float(tvec_donor_volume[:,0].min()),1)} "
f"max {round(float(tvec_donor_volume[:,0].max()),1)} "
f"mean {round(float(tvec_donor_volume[:,0].mean()),1)} "
)
mylogger.info(
f"translation dim 1: "
f"min {round(float(tvec_donor_volume[:,1].min()),1)} "
f"max {round(float(tvec_donor_volume[:,1].max()),1)} "
f"mean {round(float(tvec_donor_volume[:,1].mean()),1)} "
)
if config["save_alignment"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_tvec_donor_volume.npy"
)
mylogger.info(f"Save translation vector to {temp_path}")
np.save(temp_path, tvec_donor_volume.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Finding zeros values in the RAW data and mark them for masking")
for i in range(0, data.shape[0]):
zero_pixel_mask = torch.any(data[i, ...] == 0, dim=0)
data[i, :, zero_pixel_mask] = -100.0
mylogger.info(
f"{config['required_order'][i]}: "
f"found {int(zero_pixel_mask.type(dtype=dtype).sum())} pixel "
f"with zeros "
)
mylogger.info("-==- Done -==-")
mylogger.info("Update mask with the new regions due to alignment")
new_mask_area: torch.Tensor = torch.any(torch.any(data < -0.1, dim=0), dim=0).bool()
mask = (mask == 0).bool()
mask = torch.logical_or(mask, new_mask_area)
mask_negative: torch.Tensor = mask.clone()
mask_positve: torch.Tensor = torch.logical_not(mask)
del mask
mylogger.info("Update the data with the new mask")
data *= mask_positve.unsqueeze(0).unsqueeze(0).type(dtype=dtype)
mylogger.info("-==- Done -==-")
mylogger.info("Interpolate the 'in-between' frames for oxygenation and volume")
data[oxygenation_index, 1:, ...] = (
data[oxygenation_index, 1:, ...] + data[oxygenation_index, :-1, ...]
) / 2.0
data[volume_index, 1:, ...] = (
data[volume_index, 1:, ...] + data[volume_index, :-1, ...]
) / 2.0
mylogger.info("-==- Done -==-")
sample_frequency: float = 1.0 / meta_frame_time
mylogger.info("Extract heartbeat from volume signal")
heartbeat_ts: torch.Tensor = bandpass(
data=data[volume_index, ...].movedim(0, -1).clone(),
device=data.device,
low_frequency=config["lower_freqency_bandpass"],
high_frequency=config["upper_freqency_bandpass"],
fs=sample_frequency,
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
)
heartbeat_ts = heartbeat_ts.flatten(start_dim=0, end_dim=-2)
mask_flatten: torch.Tensor = mask_positve.flatten(start_dim=0, end_dim=-1)
heartbeat_ts = heartbeat_ts[mask_flatten, :]
heartbeat_ts = heartbeat_ts.movedim(0, -1)
heartbeat_ts -= heartbeat_ts.mean(dim=0, keepdim=True)
volume_heartbeat, _, _ = torch.linalg.svd(heartbeat_ts, full_matrices=False)
volume_heartbeat = volume_heartbeat[:, 0]
volume_heartbeat -= volume_heartbeat[
config["skip_frames_in_the_beginning"] :
].mean()
del heartbeat_ts
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
if config["save_heartbeat"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_volume_heartbeat.npy"
)
mylogger.info(f"Save volume heartbeat to {temp_path}")
np.save(temp_path, volume_heartbeat.cpu())
mylogger.info("-==- Done -==-")
volume_heartbeat = volume_heartbeat.unsqueeze(0).unsqueeze(0)
norm_volume_heartbeat = (
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] ** 2
).sum(dim=-1)
heartbeat_coefficients: torch.Tensor = torch.zeros(
(data.shape[0], data.shape[-2], data.shape[-1]),
dtype=data.dtype,
device=data.device,
)
for i in range(0, data.shape[0]):
y = bandpass(
data=data[i, ...].movedim(0, -1).clone(),
device=data.device,
low_frequency=config["lower_freqency_bandpass"],
high_frequency=config["upper_freqency_bandpass"],
fs=sample_frequency,
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
)[..., config["skip_frames_in_the_beginning"] :]
y -= y.mean(dim=-1, keepdim=True)
heartbeat_coefficients[i, ...] = (
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] * y
).sum(dim=-1) / norm_volume_heartbeat
heartbeat_coefficients[i, ...] *= mask_positve.type(
dtype=heartbeat_coefficients.dtype
)
del y
if config["save_heartbeat"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_heartbeat_coefficients.npy"
)
mylogger.info(f"Save heartbeat coefficients to {temp_path}")
np.save(temp_path, heartbeat_coefficients.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Remove heart beat from data")
data -= heartbeat_coefficients.unsqueeze(1) * volume_heartbeat.unsqueeze(0).movedim(
-1, 1
)
mylogger.info("-==- Done -==-")
donor_heartbeat_factor = heartbeat_coefficients[donor_index, ...].clone()
acceptor_heartbeat_factor = heartbeat_coefficients[acceptor_index, ...].clone()
del heartbeat_coefficients
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info("Calculate scaling factor for donor and acceptor")
donor_factor: torch.Tensor = (
donor_heartbeat_factor + acceptor_heartbeat_factor
) / (2 * donor_heartbeat_factor)
acceptor_factor: torch.Tensor = (
donor_heartbeat_factor + acceptor_heartbeat_factor
) / (2 * acceptor_heartbeat_factor)
del donor_heartbeat_factor
del acceptor_heartbeat_factor
if config["save_factors"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_donor_factor.npy"
)
mylogger.info(f"Save donor factor to {temp_path}")
np.save(temp_path, donor_factor.cpu())
temp_path = os.path.join(
config["export_path"], experiment_name + "_acceptor_factor.npy"
)
mylogger.info(f"Save acceptor factor to {temp_path}")
np.save(temp_path, acceptor_factor.cpu())
mylogger.info("-==- Done -==-")
mylogger.info("Scale acceptor to heart beat amplitude")
mylogger.info("Calculate mean")
mean_values_acceptor = data[
acceptor_index, config["skip_frames_in_the_beginning"] :, ...
].nanmean(dim=0, keepdim=True)
mylogger.info("Remove mean")
data[acceptor_index, ...] -= mean_values_acceptor
mylogger.info("Apply acceptor_factor and mask")
data[acceptor_index, ...] *= acceptor_factor.unsqueeze(0) * mask_positve.unsqueeze(
0
)
mylogger.info("Add mean")
data[acceptor_index, ...] += mean_values_acceptor
mylogger.info("-==- Done -==-")
mylogger.info("Scale donor to heart beat amplitude")
mylogger.info("Calculate mean")
mean_values_donor = data[
donor_index, config["skip_frames_in_the_beginning"] :, ...
].nanmean(dim=0, keepdim=True)
mylogger.info("Remove mean")
data[donor_index, ...] -= mean_values_donor
mylogger.info("Apply donor_factor and mask")
data[donor_index, ...] *= donor_factor.unsqueeze(0) * mask_positve.unsqueeze(0)
mylogger.info("Add mean")
data[donor_index, ...] += mean_values_donor
mylogger.info("-==- Done -==-")
mylogger.info("Divide by mean over time")
data /= data[:, config["skip_frames_in_the_beginning"] :, ...].nanmean(
dim=1,
keepdim=True,
)
data = data.nan_to_num(nan=0.0)
mylogger.info("-==- Done -==-")
mylogger.info("Preparation for regression -- Gauss smear")
spatial_width = float(config["gauss_smear_spatial_width"])
if config["binning_enable"] and (config["binning_at_the_end"] is False):
spatial_width /= float(config["binning_kernel_size"])
mylogger.info(
f"Mask -- "
f"spatial width: {spatial_width}, "
f"temporal width: {float(config['gauss_smear_temporal_width'])}, "
f"use matlab mode: {bool(config['gauss_smear_use_matlab_mask'])} "
)
input_mask = mask_positve.type(dtype=dtype).clone()
filtered_mask: torch.Tensor
filtered_mask, _ = gauss_smear_individual(
input=input_mask,
spatial_width=spatial_width,
temporal_width=float(config["gauss_smear_temporal_width"]),
use_matlab_mask=bool(config["gauss_smear_use_matlab_mask"]),
epsilon=float(torch.finfo(input_mask.dtype).eps),
)
mylogger.info("creating a copy of the data")
data_filtered = data.clone().movedim(1, -1)
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
overwrite_fft_gauss: None | torch.Tensor = None
for i in range(0, data_filtered.shape[0]):
mylogger.info(
f"{config['required_order'][i]} -- "
f"spatial width: {spatial_width}, "
f"temporal width: {float(config['gauss_smear_temporal_width'])}, "
f"use matlab mode: {bool(config['gauss_smear_use_matlab_mask'])} "
)
data_filtered[i, ...] *= input_mask.unsqueeze(-1)
data_filtered[i, ...], overwrite_fft_gauss = gauss_smear_individual(
input=data_filtered[i, ...],
spatial_width=spatial_width,
temporal_width=float(config["gauss_smear_temporal_width"]),
overwrite_fft_gauss=overwrite_fft_gauss,
use_matlab_mask=bool(config["gauss_smear_use_matlab_mask"]),
epsilon=float(torch.finfo(input_mask.dtype).eps),
)
data_filtered[i, ...] /= filtered_mask + 1e-20
data_filtered[i, ...] += 1.0 - input_mask.unsqueeze(-1)
del filtered_mask
del overwrite_fft_gauss
del input_mask
mylogger.info("data_filtered is populated")
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info("-==- Done -==-")
mylogger.info("Preperation for Regression")
mylogger.info("Move time dimensions of data to the last dimension")
data = data.movedim(1, -1)
mylogger.info("Regression Acceptor")
mylogger.info(f"Target: {config['target_camera_acceptor']}")
mylogger.info(
f"Regressors: constant, linear and {config['regressor_cameras_acceptor']}"
)
target_id: int = config["required_order"].index(config["target_camera_acceptor"])
regressor_id: list[int] = []
for i in range(0, len(config["regressor_cameras_acceptor"])):
regressor_id.append(
config["required_order"].index(config["regressor_cameras_acceptor"][i])
)
data_acceptor, coefficients_acceptor = regression(
mylogger=mylogger,
target_camera_id=target_id,
regressor_camera_ids=regressor_id,
mask=mask_negative,
data=data,
data_filtered=data_filtered,
first_none_ramp_frame=int(config["skip_frames_in_the_beginning"]),
)
if config["save_regression_coefficients"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_coefficients_acceptor.npy"
)
mylogger.info(f"Save acceptor coefficients to {temp_path}")
np.save(temp_path, coefficients_acceptor.cpu())
del coefficients_acceptor
mylogger.info("-==- Done -==-")
mylogger.info("Regression Donor")
mylogger.info(f"Target: {config['target_camera_donor']}")
mylogger.info(
f"Regressors: constant, linear and {config['regressor_cameras_donor']}"
)
target_id = config["required_order"].index(config["target_camera_donor"])
regressor_id = []
for i in range(0, len(config["regressor_cameras_donor"])):
regressor_id.append(
config["required_order"].index(config["regressor_cameras_donor"][i])
)
data_donor, coefficients_donor = regression(
mylogger=mylogger,
target_camera_id=target_id,
regressor_camera_ids=regressor_id,
mask=mask_negative,
data=data,
data_filtered=data_filtered,
first_none_ramp_frame=int(config["skip_frames_in_the_beginning"]),
)
if config["save_regression_coefficients"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_coefficients_donor.npy"
)
mylogger.info(f"Save acceptor donor to {temp_path}")
np.save(temp_path, coefficients_donor.cpu())
del coefficients_donor
mylogger.info("-==- Done -==-")
del data
del data_filtered
if device != torch.device("cpu"):
torch.cuda.empty_cache()
mylogger.info("Empty CUDA cache")
free_mem = cuda_total_memory - max(
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
)
mylogger.info(f"CUDA memory: {free_mem//1024} MByte")
mylogger.info("Calculate ratio sequence")
if config["classical_ratio_mode"]:
mylogger.info("via acceptor / donor")
ratio_sequence: torch.Tensor = data_acceptor / data_donor
mylogger.info("via / mean over time")
ratio_sequence /= ratio_sequence.mean(dim=-1, keepdim=True)
else:
mylogger.info("via 1.0 + acceptor - donor")
ratio_sequence = 1.0 + data_acceptor - data_donor
mylogger.info("Remove nan")
ratio_sequence = torch.nan_to_num(ratio_sequence, nan=0.0)
mylogger.info("-==- Done -==-")
if config["binning_enable"] and config["binning_at_the_end"]:
mylogger.info("Binning of data")
mylogger.info(
(
f"kernel_size={int(config['binning_kernel_size'])}, "
f"stride={int(config['binning_stride'])}, "
"divisor_override=None"
)
)
ratio_sequence = binning(
ratio_sequence.unsqueeze(-1),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=None,
).squeeze(-1)
mask_positve = (
binning(
mask_positve.unsqueeze(-1).unsqueeze(-1).type(dtype=dtype),
kernel_size=int(config["binning_kernel_size"]),
stride=int(config["binning_stride"]),
divisor_override=None,
)
.squeeze(-1)
.squeeze(-1)
)
mask_positve = (mask_positve > 0).type(torch.bool)
if config["save_as_python"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_ratio_sequence.npz"
)
mylogger.info(f"Save ratio_sequence and mask to {temp_path}")
np.savez_compressed(
temp_path, ratio_sequence=ratio_sequence.cpu(), mask=mask_positve.cpu()
)
if config["save_as_matlab"]:
temp_path = os.path.join(
config["export_path"], experiment_name + "_ratio_sequence.hd5"
)
mylogger.info(f"Save ratio_sequence and mask to {temp_path}")
file_handle = h5py.File(temp_path, "w")
mask_positve = mask_positve.movedim(0, -1)
ratio_sequence = ratio_sequence.movedim(1, -1).movedim(0, -1)
_ = file_handle.create_dataset(
"mask",
data=mask_positve.type(torch.uint8).cpu(),
compression="gzip",
compression_opts=9,
)
_ = file_handle.create_dataset(
"ratio_sequence",
data=ratio_sequence.cpu(),
compression="gzip",
compression_opts=9,
)
mylogger.info("Reminder: How to read with matlab:")
mylogger.info(f"mask = h5read('{temp_path}','/mask');")
mylogger.info(f"ratio_sequence = h5read('{temp_path}','/ratio_sequence');")
file_handle.close()
del ratio_sequence
del mask_positve
del mask_negative
mylogger.info("")
mylogger.info("***********************************************")
mylogger.info("* TRIAL END ***********************************")
mylogger.info("***********************************************")
mylogger.info("")
return
mylogger = create_logger(
save_logging_messages=True, display_logging_messages=True, log_stage_name="stage_4"
)
config = load_config(mylogger=mylogger)
if (config["save_as_python"] is False) and (config["save_as_matlab"] is False):
mylogger.info("No output will be created. ")
mylogger.info("Change save_as_python and/or save_as_matlab in the config file")
mylogger.info("ERROR: STOP!!!")
exit()
device = get_torch_device(mylogger, config["force_to_cpu"])
mylogger.info(f"Create directory {config['export_path']} in the case it does not exist")
os.makedirs(config["export_path"], exist_ok=True)
raw_data_path: str = os.path.join(
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
if os.path.isdir(raw_data_path) is False:
mylogger.info(f"ERROR: could not find raw directory {raw_data_path}!!!!")
exit()
experiments = get_experiments(raw_data_path)
for experiment_counter in range(0, experiments.shape[0]):
experiment_id = int(experiments[experiment_counter])
trials = get_trials(raw_data_path, experiment_id)
for trial_counter in range(0, trials.shape[0]):
trial_id = int(trials[trial_counter])
mylogger.info("")
mylogger.info(
f"======= EXPERIMENT ID: {experiment_id} ==== TRIAL ID: {trial_id} ======="
)
mylogger.info("")
process_trial(
config=config,
mylogger=mylogger,
experiment_id=experiment_id,
trial_id=trial_id,
device=device,
)