Add files via upload

This commit is contained in:
David Rotermund 2023-07-10 18:12:33 +02:00 committed by GitHub
parent 65a3a78b4a
commit 80e5234105
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -15,7 +15,7 @@ start_position: int = 0
start_position_coefficients: int = 100
remove_heartbeat: bool = True # i.e. use SVD
bin_size: int = 4
threshold: float | None = None # Between 0 and 1.0
threshold: float | None = 0.1 # Between 0 and 1.0
display_logging_messages: bool = False
@ -50,10 +50,35 @@ print(f"Continue with experiment: {experiment_id}")
list_of_trials = af.get_trials(experiment_id).cpu().numpy()
print(f"The following trials have been found:\n {list_of_trials}")
# mask
_, mask = af.automatic_load(
experiment_id=experiment_id,
trial_id=int(list_of_trials[0]),
start_position=start_position,
remove_heartbeat=remove_heartbeat, # i.e. use SVD
bin_size=bin_size,
initital_mask_name=initital_mask_name,
initital_mask_update=initital_mask_update,
initital_mask_roi=initital_mask_roi,
start_position_coefficients=start_position_coefficients,
gaussian_blur_kernel_size=gaussian_blur_kernel_size,
gaussian_blur_sigma=gaussian_blur_sigma,
bin_size_post=bin_size_post,
threshold=threshold,
)
if mask is not None:
np.save("mask.npy", mask.cpu())
# data
result: torch.Tensor | None = None
count_not_nan: torch.Tensor | None = None
n: float = 0
for trial_id in trange(0, len(list_of_trials)):
result_temp, mask = af.automatic_load(
result_temp, _ = af.automatic_load( # type: ignore
experiment_id=experiment_id,
trial_id=int(list_of_trials[trial_id]),
start_position=start_position,
@ -66,20 +91,23 @@ for trial_id in trange(0, len(list_of_trials)):
gaussian_blur_kernel_size=gaussian_blur_kernel_size,
gaussian_blur_sigma=gaussian_blur_sigma,
bin_size_post=bin_size_post,
threshold=threshold,
threshold=None,
)
n += 1.0
if result is None:
result = result_temp
result = (result_temp - 1.0).nan_to_num(nan=0.0)
count_not_nan = torch.isfinite(result_temp).type(torch.float32)
else:
result += result_temp
result += (result_temp - 1.0).nan_to_num(nan=0.0)
count_not_nan += torch.isfinite(result_temp).type(torch.float32)
assert result is not None
if trial_id % 10 == 0:
np.save("result.npy", (result / count_not_nan).cpu())
np.save("count_not_nan.npy", (count_not_nan / n).cpu())
assert result is not None
assert count_not_nan is not None
result /= n
np.save("result.npy", result.cpu())
if mask is not None:
np.save("mask.npy", mask.cpu())
np.save("result.npy", (result / count_not_nan).cpu())
np.save("count_not_nan.npy", (count_not_nan / n).cpu())