Add files via upload
This commit is contained in:
parent
bf0daa364c
commit
b563882942
2 changed files with 447 additions and 0 deletions
246
reproduction_effort/binning_aligned_process.py
Normal file
246
reproduction_effort/binning_aligned_process.py
Normal file
|
@ -0,0 +1,246 @@
|
|||
import numpy as np
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
import h5py # type: ignore
|
||||
import scipy.io as sio # type: ignore
|
||||
|
||||
from functions.binning import binning
|
||||
from functions.align_cameras import align_cameras
|
||||
from functions.preprocessing import preprocessing
|
||||
from functions.bandpass import bandpass
|
||||
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device_name: str = "cuda:0"
|
||||
else:
|
||||
device_name = "cpu"
|
||||
print(f"Using device: {device_name}")
|
||||
device: torch.device = torch.device(device_name)
|
||||
dtype: torch.dtype = torch.float32
|
||||
|
||||
|
||||
filename_raw: str = f"raw{os.sep}Exp001_Trial001_Part001.npy"
|
||||
filename_raw_json: str = f"raw{os.sep}Exp001_Trial001_Part001_meta.txt"
|
||||
filename_mask: str = "2020-12-08maskPixelraw2.mat"
|
||||
|
||||
first_none_ramp_frame: int = 100
|
||||
spatial_width: float = 2
|
||||
temporal_width: float = 0.1
|
||||
|
||||
lower_freqency_bandpass: float = 5.0
|
||||
upper_freqency_bandpass: float = 14.0
|
||||
|
||||
lower_frequency_heartbeat: float = 5.0
|
||||
upper_frequency_heartbeat: float = 14.0
|
||||
sample_frequency: float = 100.0
|
||||
|
||||
target_camera: list[str] = ["acceptor", "donor"]
|
||||
regressor_cameras: list[str] = ["oxygenation", "volume"]
|
||||
batch_size: int = 200
|
||||
required_order: list[str] = ["acceptor", "donor", "oxygenation", "volume"]
|
||||
|
||||
|
||||
test_overwrite_with_old_bining: bool = False
|
||||
test_overwrite_with_old_aligned: bool = False
|
||||
filename_data_binning_replace: str = "bin_old/Exp001_Trial001_Part001.mat"
|
||||
filename_data_aligned_replace: str = "aligned_old/Exp001_Trial001_Part001.mat"
|
||||
|
||||
data = torch.tensor(np.load(filename_raw).astype(np.float32), dtype=dtype)
|
||||
|
||||
with open(filename_raw_json, "r") as file_handle:
|
||||
metadata: dict = json.load(file_handle)
|
||||
channels: list[str] = metadata["channelKey"]
|
||||
|
||||
data = binning(data).to(device)
|
||||
|
||||
if test_overwrite_with_old_bining:
|
||||
data = torch.tensor(
|
||||
sio.loadmat(filename_data_binning_replace)["nparray"].astype(np.float32),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
|
||||
ref_image = data[:, :, data.shape[-2] // 2, :].clone()
|
||||
|
||||
(
|
||||
acceptor,
|
||||
donor,
|
||||
oxygenation,
|
||||
volume,
|
||||
angle_donor_volume,
|
||||
tvec_donor_volume,
|
||||
angle_refref,
|
||||
tvec_refref,
|
||||
) = align_cameras(
|
||||
channels=channels,
|
||||
data=data,
|
||||
ref_image=ref_image,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
batch_size=batch_size,
|
||||
fill_value=-1,
|
||||
)
|
||||
del data
|
||||
|
||||
|
||||
camera_sequence: list[torch.Tensor] = []
|
||||
|
||||
for cam in required_order:
|
||||
if cam.startswith("acceptor"):
|
||||
camera_sequence.append(acceptor.movedim(0, -1).clone())
|
||||
del acceptor
|
||||
if cam.startswith("donor"):
|
||||
camera_sequence.append(donor.movedim(0, -1).clone())
|
||||
del donor
|
||||
if cam.startswith("oxygenation"):
|
||||
camera_sequence.append(oxygenation.movedim(0, -1).clone())
|
||||
del oxygenation
|
||||
if cam.startswith("volume"):
|
||||
camera_sequence.append(volume.movedim(0, -1).clone())
|
||||
del volume
|
||||
|
||||
if test_overwrite_with_old_aligned:
|
||||
|
||||
data_aligned_replace: torch.Tensor = torch.tensor(
|
||||
sio.loadmat(filename_data_aligned_replace)["data"].astype(np.float32),
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
camera_sequence[0] = data_aligned_replace[..., 0].clone()
|
||||
camera_sequence[1] = data_aligned_replace[..., 1].clone()
|
||||
camera_sequence[2] = data_aligned_replace[..., 2].clone()
|
||||
camera_sequence[3] = data_aligned_replace[..., 3].clone()
|
||||
del data_aligned_replace
|
||||
|
||||
data_acceptor, data_donor, mask = preprocessing(
|
||||
cameras=channels,
|
||||
camera_sequence=camera_sequence,
|
||||
filename_mask=filename_mask,
|
||||
device=device,
|
||||
first_none_ramp_frame=first_none_ramp_frame,
|
||||
spatial_width=spatial_width,
|
||||
temporal_width=temporal_width,
|
||||
target_camera=target_camera,
|
||||
regressor_cameras=regressor_cameras,
|
||||
lower_frequency_heartbeat=lower_frequency_heartbeat,
|
||||
upper_frequency_heartbeat=upper_frequency_heartbeat,
|
||||
sample_frequency=sample_frequency,
|
||||
)
|
||||
|
||||
ratio_sequence: torch.Tensor = data_acceptor / data_donor
|
||||
|
||||
ratio_sequence /= ratio_sequence.mean(dim=-1, keepdim=True)
|
||||
ratio_sequence = torch.nan_to_num(ratio_sequence, nan=0.0)
|
||||
|
||||
new: np.ndarray = ratio_sequence.cpu().numpy()
|
||||
|
||||
file_handle = h5py.File("old.mat", "r")
|
||||
old: np.ndarray = np.array(file_handle["ratioSequence"]) # type:ignore
|
||||
# HDF5 loads everything backwards...
|
||||
old = np.moveaxis(old, 0, -1)
|
||||
old = np.moveaxis(old, 0, -2)
|
||||
|
||||
pos_x = 25
|
||||
pos_y = 75
|
||||
|
||||
plt.figure(1)
|
||||
plt.subplot(2, 1, 1)
|
||||
new_select = new[pos_x, pos_y, :]
|
||||
old_select = old[pos_x, pos_y, :]
|
||||
plt.plot(new_select, label="New")
|
||||
plt.plot(old_select, "--", label="Old")
|
||||
plt.plot(old_select - new_select + 1.0, label="Old - New + 1")
|
||||
plt.title(f"Position: {pos_x}, {pos_y}")
|
||||
plt.legend()
|
||||
|
||||
plt.subplot(2, 1, 2)
|
||||
differences = (np.abs(new - old)).max(axis=-1)
|
||||
plt.imshow(differences)
|
||||
plt.title("Max of abs(new-old) along time")
|
||||
plt.colorbar()
|
||||
plt.show(block=False)
|
||||
|
||||
|
||||
ratio_sequence_a = bandpass(
|
||||
data=data_acceptor,
|
||||
device=data_acceptor.device,
|
||||
low_frequency=lower_freqency_bandpass,
|
||||
high_frequency=upper_freqency_bandpass,
|
||||
fs=100.0,
|
||||
filtfilt_chuck_size=10,
|
||||
)
|
||||
|
||||
ratio_sequence_b = bandpass(
|
||||
data=data_donor,
|
||||
device=data_donor.device,
|
||||
low_frequency=lower_freqency_bandpass,
|
||||
high_frequency=upper_freqency_bandpass,
|
||||
fs=100.0,
|
||||
filtfilt_chuck_size=10,
|
||||
)
|
||||
|
||||
original_shape = ratio_sequence_a.shape
|
||||
|
||||
ratio_sequence_a = ratio_sequence_a.flatten(start_dim=0, end_dim=-2)
|
||||
ratio_sequence_b = ratio_sequence_b.flatten(start_dim=0, end_dim=-2)
|
||||
|
||||
mask = mask.flatten(start_dim=0, end_dim=-1)
|
||||
ratio_sequence_a = ratio_sequence_a[mask, :]
|
||||
ratio_sequence_b = ratio_sequence_b[mask, :]
|
||||
|
||||
ratio_sequence_a = ratio_sequence_a.movedim(0, -1)
|
||||
ratio_sequence_b = ratio_sequence_b.movedim(0, -1)
|
||||
|
||||
ratio_sequence_a -= ratio_sequence_a.mean(dim=0, keepdim=True)
|
||||
ratio_sequence_b -= ratio_sequence_b.mean(dim=0, keepdim=True)
|
||||
|
||||
u_a, s_a, Vh_a = torch.linalg.svd(ratio_sequence_a, full_matrices=False)
|
||||
u_a = u_a[:, 0]
|
||||
s_a = s_a[0]
|
||||
Vh_a = Vh_a[0, :]
|
||||
|
||||
heartbeatactivitmap_a = torch.zeros(
|
||||
(original_shape[0], original_shape[1]), device=Vh_a.device, dtype=Vh_a.dtype
|
||||
).flatten(start_dim=0, end_dim=-1)
|
||||
|
||||
heartbeatactivitmap_a *= torch.nan
|
||||
heartbeatactivitmap_a[mask] = s_a * Vh_a
|
||||
heartbeatactivitmap_a = heartbeatactivitmap_a.reshape(
|
||||
(original_shape[0], original_shape[1])
|
||||
)
|
||||
|
||||
u_b, s_b, Vh_b = torch.linalg.svd(ratio_sequence_b, full_matrices=False)
|
||||
u_b = u_b[:, 0]
|
||||
s_b = s_b[0]
|
||||
Vh_b = Vh_b[0, :]
|
||||
|
||||
heartbeatactivitmap_b = torch.zeros(
|
||||
(original_shape[0], original_shape[1]), device=Vh_b.device, dtype=Vh_b.dtype
|
||||
).flatten(start_dim=0, end_dim=-1)
|
||||
|
||||
heartbeatactivitmap_b *= torch.nan
|
||||
heartbeatactivitmap_b[mask] = s_b * Vh_b
|
||||
heartbeatactivitmap_b = heartbeatactivitmap_b.reshape(
|
||||
(original_shape[0], original_shape[1])
|
||||
)
|
||||
|
||||
plt.figure(2)
|
||||
plt.subplot(2, 1, 1)
|
||||
plt.plot(u_a.cpu(), label="aceptor")
|
||||
plt.plot(u_b.cpu(), label="donor")
|
||||
plt.legend()
|
||||
plt.subplot(2, 1, 2)
|
||||
plt.imshow(
|
||||
torch.cat(
|
||||
(
|
||||
heartbeatactivitmap_a,
|
||||
heartbeatactivitmap_b,
|
||||
),
|
||||
dim=1,
|
||||
).cpu()
|
||||
)
|
||||
plt.colorbar()
|
||||
plt.show()
|
201
reproduction_effort/heartbeat.py
Normal file
201
reproduction_effort/heartbeat.py
Normal file
|
@ -0,0 +1,201 @@
|
|||
import numpy as np
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
import matplotlib.pyplot as plt
|
||||
import scipy.io as sio # type: ignore
|
||||
|
||||
from functions.binning import binning
|
||||
from functions.align_cameras import align_cameras
|
||||
from functions.bandpass import bandpass
|
||||
from functions.make_mask import make_mask
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device_name: str = "cuda:0"
|
||||
else:
|
||||
device_name = "cpu"
|
||||
print(f"Using device: {device_name}")
|
||||
device: torch.device = torch.device(device_name)
|
||||
dtype: torch.dtype = torch.float32
|
||||
|
||||
|
||||
filename_raw: str = f"raw{os.sep}Exp001_Trial001_Part001.npy"
|
||||
filename_raw_json: str = f"raw{os.sep}Exp001_Trial001_Part001_meta.txt"
|
||||
filename_mask: str = "2020-12-08maskPixelraw2.mat"
|
||||
|
||||
first_none_ramp_frame: int = 100
|
||||
spatial_width: float = 2
|
||||
temporal_width: float = 0.1
|
||||
|
||||
lower_freqency_bandpass: float = 5.0
|
||||
upper_freqency_bandpass: float = 14.0
|
||||
|
||||
lower_frequency_heartbeat: float = 5.0
|
||||
upper_frequency_heartbeat: float = 14.0
|
||||
sample_frequency: float = 100.0
|
||||
|
||||
target_camera: list[str] = ["acceptor", "donor"]
|
||||
regressor_cameras: list[str] = ["oxygenation", "volume"]
|
||||
batch_size: int = 200
|
||||
required_order: list[str] = ["acceptor", "donor", "oxygenation", "volume"]
|
||||
|
||||
|
||||
test_overwrite_with_old_bining: bool = False
|
||||
test_overwrite_with_old_aligned: bool = False
|
||||
filename_data_binning_replace: str = "bin_old/Exp001_Trial001_Part001.mat"
|
||||
filename_data_aligned_replace: str = "aligned_old/Exp001_Trial001_Part001.mat"
|
||||
|
||||
data = torch.tensor(np.load(filename_raw).astype(np.float32), dtype=dtype)
|
||||
|
||||
with open(filename_raw_json, "r") as file_handle:
|
||||
metadata: dict = json.load(file_handle)
|
||||
channels: list[str] = metadata["channelKey"]
|
||||
|
||||
|
||||
if test_overwrite_with_old_bining:
|
||||
data = torch.tensor(
|
||||
sio.loadmat(filename_data_binning_replace)["nparray"].astype(np.float32),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
)
|
||||
else:
|
||||
data = binning(data).to(device)
|
||||
|
||||
ref_image = data[:, :, data.shape[-2] // 2, :].clone()
|
||||
|
||||
(
|
||||
acceptor,
|
||||
donor,
|
||||
oxygenation,
|
||||
volume,
|
||||
angle_donor_volume,
|
||||
tvec_donor_volume,
|
||||
angle_refref,
|
||||
tvec_refref,
|
||||
) = align_cameras(
|
||||
channels=channels,
|
||||
data=data,
|
||||
ref_image=ref_image,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
batch_size=batch_size,
|
||||
fill_value=-1,
|
||||
)
|
||||
del data
|
||||
|
||||
|
||||
camera_sequence: list[torch.Tensor] = []
|
||||
|
||||
for cam in required_order:
|
||||
if cam.startswith("acceptor"):
|
||||
camera_sequence.append(acceptor.movedim(0, -1).clone())
|
||||
del acceptor
|
||||
if cam.startswith("donor"):
|
||||
camera_sequence.append(donor.movedim(0, -1).clone())
|
||||
del donor
|
||||
if cam.startswith("oxygenation"):
|
||||
camera_sequence.append(oxygenation.movedim(0, -1).clone())
|
||||
del oxygenation
|
||||
if cam.startswith("volume"):
|
||||
camera_sequence.append(volume.movedim(0, -1).clone())
|
||||
del volume
|
||||
|
||||
if test_overwrite_with_old_aligned:
|
||||
|
||||
data_aligned_replace: torch.Tensor = torch.tensor(
|
||||
sio.loadmat(filename_data_aligned_replace)["data"].astype(np.float32),
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
camera_sequence[0] = data_aligned_replace[..., 0].clone()
|
||||
camera_sequence[1] = data_aligned_replace[..., 1].clone()
|
||||
camera_sequence[2] = data_aligned_replace[..., 2].clone()
|
||||
camera_sequence[3] = data_aligned_replace[..., 3].clone()
|
||||
del data_aligned_replace
|
||||
|
||||
|
||||
mask: torch.Tensor = make_mask(
|
||||
filename_mask=filename_mask,
|
||||
camera_sequence=camera_sequence,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
mask_flatten = mask.flatten(start_dim=0, end_dim=-1)
|
||||
|
||||
original_shape = camera_sequence[0].shape
|
||||
for i in range(0, len(camera_sequence)):
|
||||
camera_sequence[i] = bandpass(
|
||||
data=camera_sequence[i].clone(),
|
||||
device=camera_sequence[i].device,
|
||||
low_frequency=lower_freqency_bandpass,
|
||||
high_frequency=upper_freqency_bandpass,
|
||||
fs=100.0,
|
||||
filtfilt_chuck_size=10,
|
||||
)
|
||||
|
||||
camera_sequence[i] = camera_sequence[i].flatten(start_dim=0, end_dim=-2)
|
||||
camera_sequence[i] = camera_sequence[i][mask_flatten, :]
|
||||
if (i == 0) or (i == 1):
|
||||
camera_sequence[i] = camera_sequence[i][:, 1:]
|
||||
else:
|
||||
camera_sequence[i] = (
|
||||
camera_sequence[i][:, 1:] + camera_sequence[i][:, :-1]
|
||||
) / 2.0
|
||||
|
||||
camera_sequence[i] = camera_sequence[i].movedim(0, -1)
|
||||
camera_sequence[i] -= camera_sequence[i].mean(dim=0, keepdim=True)
|
||||
|
||||
|
||||
camera_sequence_cat = torch.cat(
|
||||
(camera_sequence[0], camera_sequence[1], camera_sequence[2], camera_sequence[3]),
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
print(camera_sequence_cat.min(), camera_sequence_cat.max())
|
||||
|
||||
u_a, s_a, Vh_a = torch.linalg.svd(camera_sequence_cat, full_matrices=False)
|
||||
u_a = u_a[:, 0]
|
||||
Vh_a = Vh_a[0, :] * s_a[0]
|
||||
|
||||
heart_beat_activity_map: list[torch.Tensor] = []
|
||||
|
||||
start_pos: int = 0
|
||||
end_pos: int = 0
|
||||
for i in range(0, len(camera_sequence)):
|
||||
end_pos = start_pos + int(mask_flatten.sum())
|
||||
heart_beat_activity_map.append(
|
||||
torch.full(
|
||||
(original_shape[0], original_shape[1]),
|
||||
torch.nan,
|
||||
device=Vh_a.device,
|
||||
dtype=Vh_a.dtype,
|
||||
).flatten(start_dim=0, end_dim=-1)
|
||||
)
|
||||
heart_beat_activity_map[-1][mask_flatten] = Vh_a[start_pos:end_pos]
|
||||
heart_beat_activity_map[-1] = heart_beat_activity_map[-1].reshape(
|
||||
(original_shape[0], original_shape[1])
|
||||
)
|
||||
start_pos = end_pos
|
||||
|
||||
full_image = torch.cat(heart_beat_activity_map, dim=1)
|
||||
|
||||
|
||||
# I want to scale the time series to std unity
|
||||
# and therefore need to increase the amplitudes of the maps
|
||||
u_a_std = torch.std(u_a)
|
||||
u_a /= u_a_std
|
||||
full_image *= u_a_std
|
||||
|
||||
plt.subplot(2, 1, 1)
|
||||
plt.plot(u_a.cpu())
|
||||
plt.xlabel("Frame ID")
|
||||
plt.title(
|
||||
f"Common heartbeat in {lower_freqency_bandpass}Hz - {upper_freqency_bandpass}Hz"
|
||||
)
|
||||
plt.subplot(2, 1, 2)
|
||||
plt.imshow(full_image.cpu(), cmap="hot")
|
||||
plt.colorbar()
|
||||
plt.title("acceptor, donor, oxygenation, volume")
|
||||
plt.show()
|
Loading…
Reference in a new issue