import numpy as np import matplotlib.pyplot as plt import argh import scipy # type: ignore import json import os from jsmin import jsmin # type:ignore def func_pow(x, a, b, c): return -a * x**b + c def func_exp(x, a, b, c): return a * np.exp(-x / b) + c # mouse: int = 0, 1, 2, 3, 4 def plot( filename: str = "config_M_Sert_Cre_49.json", experiment: int = 4, skip_timesteps: int = 100, # If there is no special ROI... Get one! This is just a backup roi_control_path_default: str = "roi_controlM_Sert_Cre_49.npy", roi_sdarken_path_default: str = "roi_sdarkenM_Sert_Cre_49.npy", remove_fit: bool = False, fit_power: bool = False, # True => -ax^b ; False => exp(-b) ) -> None: if os.path.isfile(filename) is False: print(f"{filename} is missing") exit() with open(filename, "r") as file: config = json.loads(jsmin(file.read())) raw_data_path: str = os.path.join( config["basic_path"], config["recoding_data"], config["mouse_identifier"], config["raw_path"], ) if os.path.isdir(raw_data_path) is False: print(f"ERROR: could not find raw directory {raw_data_path}!!!!") exit() with open(f"meta_{config["mouse_identifier"]}_exp{experiment:03d}.json", "r") as file: metadata = json.loads(jsmin(file.read())) experiment_names = metadata['sessionMetaData']['experimentNames'][str(experiment)] roi_control_path: str = f"roi_control{config["mouse_identifier"]}.npy" roi_sdarken_path: str = f"roi_sdarken{config["mouse_identifier"]}.npy" if os.path.isfile(roi_control_path) is False: print(f"Using replacement RIO: {roi_control_path_default}") roi_control_path = roi_control_path_default if os.path.isfile(roi_sdarken_path) is False: print(f"Using replacement RIO: {roi_sdarken_path_default}") roi_sdarken_path = roi_sdarken_path_default print("Load data...") data = np.load("dsq_" + config["mouse_identifier"] + ".npy", mmap_mode="r") print("Load light signal...") light = np.load("lsq_" + config["mouse_identifier"] + ".npy", mmap_mode="r") print("Load mask...") mask = np.load("msq_" + config["mouse_identifier"] + ".npy") roi_control = np.load(roi_control_path) roi_control *= mask assert roi_control.sum() > 0, "ROI control empty" roi_darken = np.load(roi_sdarken_path) roi_darken *= mask assert roi_darken.sum() > 0, "ROI sDarken empty" plt.figure(1) a_show = data[experiment - 1, :, :, 1000].copy() a_show[(roi_darken + roi_control) < 0.5] = np.nan plt.imshow(a_show) plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment}") plt.show(block=False) plt.figure(2) a_dontshow = data[experiment - 1, :, :, 1000].copy() a_dontshow[(roi_darken + roi_control) > 0.5] = np.nan plt.imshow(a_dontshow) plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment}") plt.show(block=False) plt.figure(3) if remove_fit: light_exp = light[experiment - 1, :, :, skip_timesteps:].copy() else: light_exp = light[experiment - 1, :, :, :].copy() light_exp[(roi_darken + roi_control) < 0.5, :] = 0.0 light_signal = light_exp.mean(axis=(0, 1)) light_signal -= light_signal.min() light_signal /= light_signal.max() if remove_fit: a_exp = data[experiment - 1, :, :, skip_timesteps:].copy() else: a_exp = data[experiment - 1, :, :, :].copy() if remove_fit: combined_matrix = (roi_darken + roi_control) > 0 idx = np.where(combined_matrix) for idx_pos in range(0, idx[0].shape[0]): temp = a_exp[idx[0][idx_pos], idx[1][idx_pos], :] temp -= temp.mean() data_time = np.arange(0, temp.shape[0], dtype=np.float32) + skip_timesteps data_time /= 100.0 data_min = temp.min() data_max = temp.max() data_delta = data_max - data_min a_min = data_min - data_delta b_min = 0.01 a_max = data_max + data_delta if fit_power: b_max = 10.0 else: b_max = 100.0 c_min = data_min - data_delta c_max = data_max + data_delta try: if fit_power: popt, _ = scipy.optimize.curve_fit( f=func_pow, xdata=data_time, ydata=np.nan_to_num(temp), bounds=([a_min, b_min, c_min], [a_max, b_max, c_max]), ) pattern: np.ndarray | None = func_pow(data_time, *popt) else: popt, _ = scipy.optimize.curve_fit( f=func_exp, xdata=data_time, ydata=np.nan_to_num(temp), bounds=([a_min, b_min, c_min], [a_max, b_max, c_max]), ) pattern = func_exp(data_time, *popt) assert pattern is not None pattern -= pattern.mean() scale = (temp * pattern).sum() / (pattern**2).sum() pattern *= scale except ValueError: print(f"Fit failed: Position ({idx[0][idx_pos]}, {idx[1][idx_pos]}") pattern = None if pattern is not None: temp -= pattern a_exp[idx[0][idx_pos], idx[1][idx_pos], :] = temp darken = a_exp[roi_darken > 0.5, :].sum(axis=0) / (roi_darken > 0.5).sum() lighten = a_exp[roi_control > 0.5, :].sum(axis=0) / (roi_control > 0.5).sum() light_signal *= darken.max() - darken.min() light_signal += darken.min() time_axis = np.arange(0, lighten.shape[-1], dtype=np.float32) + skip_timesteps time_axis /= 100.0 plt.plot(time_axis, light_signal, c="k", label="light") plt.plot(time_axis, darken, label="sDarken") plt.plot(time_axis, lighten, label="control") plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment} ({experiment_names})") plt.legend() plt.show() if __name__ == "__main__": argh.dispatch_command(plot)