import torch import torchvision as tv # type: ignore import numpy as np import json import scipy.io as sio # type: ignore from functions.align_refref import align_refref from functions.perform_donor_volume_rotation import perform_donor_volume_rotation from functions.perform_donor_volume_translation import perform_donor_volume_translation from functions.ImageAlignment import ImageAlignment @torch.no_grad() def align_cameras( filename_raw_json: str, filename_bin_mat: str, device: torch.device, dtype: torch.dtype, batch_size: int, fill_value: float = 0, ) -> tuple[ torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, ]: image_alignment = ImageAlignment(default_dtype=dtype, device=device) # --- Load data --- with open(filename_raw_json, "r") as file_handle: metadata: dict = json.load(file_handle) channels: list[str] = metadata["channelKey"] data = torch.tensor( sio.loadmat(filename_bin_mat)["nparray"].astype(np.float32), device=device, dtype=dtype, ) # --==-- DONE --==-- # --- Get reference image --- acceptor_index: int = channels.index("acceptor") donor_index: int = channels.index("donor") oxygenation_index: int = channels.index("oxygenation") volume_index: int = channels.index("volume") # --==-- DONE --==-- # --- Sort data --- acceptor = data[..., acceptor_index].moveaxis(-1, 0).clone() donor = data[..., donor_index].moveaxis(-1, 0).clone() oxygenation = data[..., oxygenation_index].moveaxis(-1, 0).clone() volume = data[..., volume_index].moveaxis(-1, 0).clone() del data # --==-- DONE --==-- # --- Calculate translation and rotation between the reference images --- angle_refref, tvec_refref, ref_image_acceptor, ref_image_donor = align_refref( ref_image_acceptor=acceptor[ acceptor.shape[0] // 2, :, :, ], ref_image_donor=donor[ donor.shape[0] // 2, :, :, ], image_alignment=image_alignment, batch_size=batch_size, fill_value=fill_value, ) ref_image_oxygenation = tv.transforms.functional.affine( img=oxygenation[ oxygenation.shape[0] // 2, :, :, ].unsqueeze(0), angle=-float(angle_refref), translate=[0, 0], scale=1.0, shear=0, interpolation=tv.transforms.InterpolationMode.BILINEAR, fill=fill_value, ) ref_image_oxygenation = tv.transforms.functional.affine( img=ref_image_oxygenation, angle=0, translate=[tvec_refref[1], tvec_refref[0]], scale=1.0, shear=0, interpolation=tv.transforms.InterpolationMode.BILINEAR, fill=fill_value, ) ref_image_oxygenation = ref_image_oxygenation.squeeze(0) ref_image_volume = volume[ volume.shape[0] // 2, :, :, ].clone() # --==-- DONE --==-- # --- Rotate and translate the acceptor and oxygenation data accordingly --- acceptor = tv.transforms.functional.affine( img=acceptor, angle=-float(angle_refref), translate=[0, 0], scale=1.0, shear=0, interpolation=tv.transforms.InterpolationMode.BILINEAR, fill=fill_value, ) acceptor = tv.transforms.functional.affine( img=acceptor, angle=0, translate=[tvec_refref[1], tvec_refref[0]], scale=1.0, shear=0, interpolation=tv.transforms.InterpolationMode.BILINEAR, fill=fill_value, ) oxygenation = tv.transforms.functional.affine( img=oxygenation, angle=-float(angle_refref), translate=[0, 0], scale=1.0, shear=0, interpolation=tv.transforms.InterpolationMode.BILINEAR, fill=fill_value, ) oxygenation = tv.transforms.functional.affine( img=oxygenation, angle=0, translate=[tvec_refref[1], tvec_refref[0]], scale=1.0, shear=0, interpolation=tv.transforms.InterpolationMode.BILINEAR, fill=fill_value, ) # --==-- DONE --==-- acceptor, donor, oxygenation, volume, angle_donor_volume = ( perform_donor_volume_rotation( acceptor=acceptor, donor=donor, oxygenation=oxygenation, volume=volume, ref_image_donor=ref_image_donor, ref_image_volume=ref_image_volume, image_alignment=image_alignment, batch_size=batch_size, fill_value=fill_value, ) ) acceptor, donor, oxygenation, volume, tvec_donor_volume = ( perform_donor_volume_translation( acceptor=acceptor, donor=donor, oxygenation=oxygenation, volume=volume, ref_image_donor=ref_image_donor, ref_image_volume=ref_image_volume, image_alignment=image_alignment, batch_size=batch_size, fill_value=fill_value, ) ) return ( acceptor, donor, oxygenation, volume, angle_donor_volume, tvec_donor_volume, angle_refref, tvec_refref, )