import numpy as np import torch import os import json import matplotlib.pyplot as plt import h5py # type: ignore import scipy.io as sio # type: ignore from functions.binning import binning from functions.align_cameras import align_cameras from functions.preprocessing import preprocessing from functions.bandpass import bandpass from functions.make_mask import make_mask from functions.interpolate_along_time import interpolate_along_time if torch.cuda.is_available(): device_name: str = "cuda:0" else: device_name = "cpu" print(f"Using device: {device_name}") device: torch.device = torch.device(device_name) dtype: torch.dtype = torch.float32 filename_raw: str = f"raw{os.sep}Exp001_Trial001_Part001.npy" filename_raw_json: str = f"raw{os.sep}Exp001_Trial001_Part001_meta.txt" filename_mask: str = "2020-12-08maskPixelraw2.mat" first_none_ramp_frame: int = 100 spatial_width: float = 2 temporal_width: float = 0.1 lower_freqency_bandpass: float = 5.0 upper_freqency_bandpass: float = 14.0 lower_frequency_heartbeat: float = 5.0 upper_frequency_heartbeat: float = 14.0 sample_frequency: float = 100.0 target_camera: list[str] = ["acceptor", "donor"] regressor_cameras: list[str] = ["oxygenation", "volume"] batch_size: int = 200 required_order: list[str] = ["acceptor", "donor", "oxygenation", "volume"] test_overwrite_with_old_bining: bool = False test_overwrite_with_old_aligned: bool = True filename_data_binning_replace: str = "bin_old/Exp001_Trial001_Part001.mat" filename_data_aligned_replace: str = "aligned_old/Exp001_Trial001_Part001.mat" data = torch.tensor(np.load(filename_raw).astype(np.float32), dtype=dtype) with open(filename_raw_json, "r") as file_handle: metadata: dict = json.load(file_handle) channels: list[str] = metadata["channelKey"] data = binning(data).to(device) if test_overwrite_with_old_bining: data = torch.tensor( sio.loadmat(filename_data_binning_replace)["nparray"].astype(np.float32), dtype=dtype, device=device, ) ref_image = data[:, :, data.shape[-2] // 2, :].clone() ( acceptor, donor, oxygenation, volume, angle_donor_volume, tvec_donor_volume, angle_refref, tvec_refref, ) = align_cameras( channels=channels, data=data, ref_image=ref_image, device=device, dtype=dtype, batch_size=batch_size, fill_value=-1, ) del data camera_sequence: list[torch.Tensor] = [] for cam in required_order: if cam.startswith("acceptor"): camera_sequence.append(acceptor.movedim(0, -1).clone()) del acceptor if cam.startswith("donor"): camera_sequence.append(donor.movedim(0, -1).clone()) del donor if cam.startswith("oxygenation"): camera_sequence.append(oxygenation.movedim(0, -1).clone()) del oxygenation if cam.startswith("volume"): camera_sequence.append(volume.movedim(0, -1).clone()) del volume if test_overwrite_with_old_aligned: data_aligned_replace: torch.Tensor = torch.tensor( sio.loadmat(filename_data_aligned_replace)["data"].astype(np.float32), device=device, dtype=dtype, ) camera_sequence[0] = data_aligned_replace[..., 0].clone() camera_sequence[1] = data_aligned_replace[..., 1].clone() camera_sequence[2] = data_aligned_replace[..., 2].clone() camera_sequence[3] = data_aligned_replace[..., 3].clone() del data_aligned_replace # -> mask: torch.Tensor = make_mask( filename_mask=filename_mask, camera_sequence=camera_sequence, device=device, dtype=dtype, ) mask_flatten = mask.flatten(start_dim=0, end_dim=-1) interpolate_along_time(camera_sequence) heartbeat_ts: torch.Tensor = bandpass( data=camera_sequence[channels.index("volume")].clone(), device=camera_sequence[channels.index("volume")].device, low_frequency=lower_freqency_bandpass, high_frequency=upper_freqency_bandpass, fs=sample_frequency, filtfilt_chuck_size=10, ) heartbeat_ts_copy = heartbeat_ts.clone() heartbeat_ts = heartbeat_ts.flatten(start_dim=0, end_dim=-2) heartbeat_ts = heartbeat_ts[mask_flatten, :] heartbeat_ts = heartbeat_ts.movedim(0, -1) heartbeat_ts -= heartbeat_ts.mean(dim=0, keepdim=True) volume_heartbeat, _, _ = torch.linalg.svd(heartbeat_ts, full_matrices=False) volume_heartbeat = volume_heartbeat[:, 0] volume_heartbeat -= volume_heartbeat[first_none_ramp_frame:].mean() volume_heartbeat = volume_heartbeat.unsqueeze(0).unsqueeze(0) heartbeat_coefficients: list[torch.Tensor] = [] for i in range(0, len(camera_sequence)): y = bandpass( data=camera_sequence[i].clone(), device=camera_sequence[i].device, low_frequency=lower_freqency_bandpass, high_frequency=upper_freqency_bandpass, fs=sample_frequency, filtfilt_chuck_size=10, )[..., first_none_ramp_frame:] y -= y.mean(dim=-1, keepdim=True) heartbeat_coefficients.append( ( (volume_heartbeat[..., first_none_ramp_frame:] * y).sum( dim=-1, keepdim=True ) / (volume_heartbeat[..., first_none_ramp_frame:] ** 2).sum( dim=-1, keepdim=True ) ) * mask.unsqueeze(-1) ) del y donor_correction_factor = heartbeat_coefficients[channels.index("donor")].clone() acceptor_correction_factor = heartbeat_coefficients[channels.index("acceptor")].clone() for i in range(0, len(camera_sequence)): camera_sequence[i] -= heartbeat_coefficients[i] * volume_heartbeat donor_factor: torch.Tensor = (donor_correction_factor + acceptor_correction_factor) / ( 2 * donor_correction_factor ) acceptor_factor: torch.Tensor = ( donor_correction_factor + acceptor_correction_factor ) / (2 * acceptor_correction_factor) # mean_values: list = [] # for i in range(0, len(channels)): # mean_values.append( # camera_sequence[i][..., first_none_ramp_frame:].nanmean(dim=-1, keepdim=True) # ) # camera_sequence[i] -= mean_values[i] camera_sequence[channels.index("acceptor")] *= acceptor_factor * mask.unsqueeze(-1) camera_sequence[channels.index("donor")] *= donor_factor * mask.unsqueeze(-1) # for i in range(0, len(channels)): # camera_sequence[i] -= mean_values[i] # exit() # <- data_acceptor, data_donor, mask = preprocessing( cameras=channels, camera_sequence=camera_sequence, filename_mask=filename_mask, device=device, first_none_ramp_frame=first_none_ramp_frame, spatial_width=spatial_width, temporal_width=temporal_width, target_camera=target_camera, regressor_cameras=regressor_cameras, ) ratio_sequence: torch.Tensor = data_acceptor / data_donor ratio_sequence /= ratio_sequence.mean(dim=-1, keepdim=True) ratio_sequence = torch.nan_to_num(ratio_sequence, nan=0.0) new: np.ndarray = ratio_sequence.cpu().numpy() file_handle = h5py.File("old.mat", "r") old: np.ndarray = np.array(file_handle["ratioSequence"]) # type:ignore # HDF5 loads everything backwards... old = np.moveaxis(old, 0, -1) old = np.moveaxis(old, 0, -2) pos_x = 25 pos_y = 75 plt.figure(1) plt.subplot(2, 1, 1) new_select = new[pos_x, pos_y, :] old_select = old[pos_x, pos_y, :] plt.plot(old_select, "r", label="Old") plt.plot(new_select, "k", label="New") # plt.plot(old_select - new_select + 1.0, label="Old - New + 1") plt.title(f"Position: {pos_x}, {pos_y}") plt.legend() plt.subplot(2, 1, 2) differences = (np.abs(new - old)).max(axis=-1) * mask.cpu().numpy() plt.imshow(differences, cmap="hot") plt.title("Max of abs(new-old) along time") plt.colorbar() plt.show()