import torch import torchvision as tv # type: ignore # The source code is based on: # https://github.com/matejak/imreg_dft # The original LICENSE: # Copyright (c) 2014, Matěj Týč # Copyright (c) 2011-2014, Christoph Gohlke # Copyright (c) 2011-2014, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the {organization} nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. class ImageAlignment(torch.nn.Module): device: torch.device default_dtype: torch.dtype excess_const: float = 1.1 exponent: str = "inf" success: torch.Tensor | None = None # The factor that detmines how many # sub-pixel we will shift scale_factor: int = 4 reference_image: torch.Tensor | None = None last_scale: torch.Tensor | None = None last_angle: torch.Tensor | None = None last_tvec: torch.Tensor | None = None # Cache image_reference_dft: torch.Tensor | None = None filt: torch.Tensor pcorr_shape: torch.Tensor log_base: torch.Tensor image_reference_logp: torch.Tensor def __init__( self, device: torch.device | None = None, default_dtype: torch.dtype | None = None, ) -> None: super().__init__() assert device is not None assert default_dtype is not None self.device = device self.default_dtype = default_dtype def set_new_reference_image(self, new_reference_image: torch.Tensor | None = None): assert new_reference_image is not None assert new_reference_image.ndim == 2 self.reference_image = ( new_reference_image.detach() .clone() .to(device=self.device) .type(dtype=self.default_dtype) ) self.image_reference_dft = None def forward( self, input: torch.Tensor, new_reference_image: torch.Tensor | None = None ) -> torch.Tensor: assert input.ndim == 3 if new_reference_image is not None: self.set_new_reference_image(new_reference_image) assert self.reference_image is not None assert self.reference_image.ndim == 2 assert input.shape[-2] == self.reference_image.shape[-2] assert input.shape[-1] == self.reference_image.shape[-1] self.last_scale, self.last_angle, self.last_tvec, output = self.similarity( self.reference_image, input.to(device=self.device).type(dtype=self.default_dtype), ) return output def dry_run( self, input: torch.Tensor, new_reference_image: torch.Tensor | None = None ) -> tuple[torch.Tensor | None, torch.Tensor | None, torch.Tensor | None]: assert input.ndim == 3 if new_reference_image is not None: self.set_new_reference_image(new_reference_image) assert self.reference_image is not None assert self.reference_image.ndim == 2 assert input.shape[-2] == self.reference_image.shape[-2] assert input.shape[-1] == self.reference_image.shape[-1] images_todo = input.to(device=self.device).type(dtype=self.default_dtype) image_reference = self.reference_image assert image_reference.ndim == 2 assert images_todo.ndim == 3 bgval: torch.Tensor = self.get_borderval(img=images_todo, radius=5) self.last_scale, self.last_angle, self.last_tvec = self._similarity( image_reference, images_todo, bgval, ) return self.last_scale, self.last_angle, self.last_tvec def dry_run_translation( self, input: torch.Tensor, new_reference_image: torch.Tensor | None = None ) -> torch.Tensor: assert input.ndim == 3 if new_reference_image is not None: self.set_new_reference_image(new_reference_image) assert self.reference_image is not None assert self.reference_image.ndim == 2 assert input.shape[-2] == self.reference_image.shape[-2] assert input.shape[-1] == self.reference_image.shape[-1] images_todo = input.to(device=self.device).type(dtype=self.default_dtype) image_reference = self.reference_image assert image_reference.ndim == 2 assert images_todo.ndim == 3 tvec, _ = self._translation(image_reference, images_todo) return tvec # --------------- def dry_run_angle( self, input: torch.Tensor, new_reference_image: torch.Tensor | None = None, ) -> torch.Tensor: assert input.ndim == 3 if new_reference_image is not None: self.set_new_reference_image(new_reference_image) constraints_dynamic_angle_0: torch.Tensor = torch.zeros( (input.shape[0]), dtype=self.default_dtype, device=self.device ) constraints_dynamic_angle_1: torch.Tensor | None = None constraints_dynamic_scale_0: torch.Tensor = torch.ones( (input.shape[0]), dtype=self.default_dtype, device=self.device ) constraints_dynamic_scale_1: torch.Tensor | None = None assert self.reference_image is not None assert self.reference_image.ndim == 2 assert input.shape[-2] == self.reference_image.shape[-2] assert input.shape[-1] == self.reference_image.shape[-1] images_todo = input.to(device=self.device).type(dtype=self.default_dtype) image_reference = self.reference_image assert image_reference.ndim == 2 assert images_todo.ndim == 3 _, newangle = self._get_ang_scale( image_reference, images_todo, constraints_dynamic_scale_0, constraints_dynamic_scale_1, constraints_dynamic_angle_0, constraints_dynamic_angle_1, ) return newangle # --------------- def _get_pcorr_shape(self, shape: torch.Size) -> tuple[int, int]: ret = (int(max(shape[-2:]) * 1.0),) * 2 return ret def _get_log_base(self, shape: torch.Size, new_r: torch.Tensor) -> torch.Tensor: old_r = torch.tensor( (float(shape[-2]) * self.excess_const) / 2.0, dtype=self.default_dtype, device=self.device, ) log_base = torch.exp(torch.log(old_r) / new_r) return log_base def wrap_angle( self, angles: torch.Tensor, ceil: float = 2 * torch.pi ) -> torch.Tensor: angles += ceil / 2.0 angles %= ceil angles -= ceil / 2.0 return angles def get_borderval( self, img: torch.Tensor, radius: int | None = None ) -> torch.Tensor: assert img.ndim == 3 if radius is None: mindim = min([int(img.shape[-2]), int(img.shape[-1])]) radius = max(1, mindim // 20) mask = torch.zeros( (int(img.shape[-2]), int(img.shape[-1])), dtype=torch.bool, device=self.device, ) mask[:, :radius] = True mask[:, -radius:] = True mask[:radius, :] = True mask[-radius:, :] = True mean = torch.median(img[:, mask], dim=-1)[0] return mean def get_apofield(self, shape: torch.Size, aporad: int) -> torch.Tensor: if aporad == 0: return torch.ones( shape[-2:], dtype=self.default_dtype, device=self.device, ) assert int(shape[-2]) > aporad * 2 assert int(shape[-1]) > aporad * 2 apos = torch.hann_window( aporad * 2, dtype=self.default_dtype, periodic=False, device=self.device ) toapp_0 = torch.ones( shape[-2], dtype=self.default_dtype, device=self.device, ) toapp_0[:aporad] = apos[:aporad] toapp_0[-aporad:] = apos[-aporad:] toapp_1 = torch.ones( shape[-1], dtype=self.default_dtype, device=self.device, ) toapp_1[:aporad] = apos[:aporad] toapp_1[-aporad:] = apos[-aporad:] apofield = torch.outer(toapp_0, toapp_1) return apofield def _get_subarr( self, array: torch.Tensor, center: torch.Tensor, rad: int ) -> torch.Tensor: assert array.ndim == 3 assert center.ndim == 2 assert array.shape[0] == center.shape[0] assert center.shape[1] == 2 dim = 1 + 2 * rad subarr = torch.zeros( (array.shape[0], dim, dim), dtype=self.default_dtype, device=self.device ) corner = center - rad idx_p = range(0, corner.shape[0]) for ii in range(0, dim): yidx = corner[:, 0] + ii yidx %= array.shape[-2] for jj in range(0, dim): xidx = corner[:, 1] + jj xidx %= array.shape[-1] subarr[:, ii, jj] = array[idx_p, yidx, xidx] return subarr def _argmax_2d(self, array: torch.Tensor) -> torch.Tensor: assert array.ndim == 3 max_pos = array.reshape( (array.shape[0], array.shape[1] * array.shape[2]) ).argmax(dim=1) pos_0 = max_pos // array.shape[2] max_pos -= pos_0 * array.shape[2] ret = torch.zeros( (array.shape[0], 2), dtype=self.default_dtype, device=self.device ) ret[:, 0] = pos_0 ret[:, 1] = max_pos return ret.type(dtype=torch.int64) def _apodize(self, what: torch.Tensor) -> torch.Tensor: mindim = min([int(what.shape[-2]), int(what.shape[-1])]) aporad = int(mindim * 0.12) apofield = self.get_apofield(what.shape, aporad).unsqueeze(0) res = what * apofield bg = self.get_borderval(what, aporad // 2).unsqueeze(-1).unsqueeze(-1) res += bg * (1 - apofield) return res def _logpolar_filter(self, shape: torch.Size) -> torch.Tensor: yy = torch.linspace( -torch.pi / 2.0, torch.pi / 2.0, shape[-2], dtype=self.default_dtype, device=self.device, ).unsqueeze(1) xx = torch.linspace( -torch.pi / 2.0, torch.pi / 2.0, shape[-1], dtype=self.default_dtype, device=self.device, ).unsqueeze(0) rads = torch.sqrt(yy**2 + xx**2) filt = 1.0 - torch.cos(rads) ** 2 filt[torch.abs(rads) > torch.pi / 2] = 1 return filt def _get_angles(self, shape: torch.Tensor) -> torch.Tensor: ret = torch.zeros( (int(shape[-2]), int(shape[-1])), dtype=self.default_dtype, device=self.device, ) ret -= torch.linspace( 0, torch.pi, int(shape[-2] + 1), dtype=self.default_dtype, device=self.device, )[:-1].unsqueeze(-1) return ret def _get_lograd(self, shape: torch.Tensor, log_base: torch.Tensor) -> torch.Tensor: ret = torch.zeros( (int(shape[-2]), int(shape[-1])), dtype=self.default_dtype, device=self.device, ) ret += torch.pow( log_base, torch.arange( 0, int(shape[-1]), dtype=self.default_dtype, device=self.device, ), ).unsqueeze(0) return ret def _logpolar( self, image: torch.Tensor, shape: torch.Tensor, log_base: torch.Tensor ) -> torch.Tensor: assert image.ndim == 3 imshape: torch.Tensor = torch.tensor( image.shape[-2:], dtype=self.default_dtype, device=self.device, ) center: torch.Tensor = imshape.clone() / 2 theta: torch.Tensor = self._get_angles(shape) radius_x: torch.Tensor = self._get_lograd(shape, log_base) radius_y: torch.Tensor = radius_x.clone() ellipse_coef: torch.Tensor = imshape[0] / imshape[1] radius_x /= ellipse_coef y = radius_y * torch.sin(theta) + center[0] y /= float(image.shape[-2]) y *= 2 y -= 1 x = radius_x * torch.cos(theta) + center[1] x /= float(image.shape[-1]) x *= 2 x -= 1 idx_x = torch.where(torch.abs(x) <= 1.0, 1.0, 0.0) idx_y = torch.where(torch.abs(y) <= 1.0, 1.0, 0.0) normalized_coords = torch.cat( ( x.unsqueeze(-1), y.unsqueeze(-1), ), dim=-1, ).unsqueeze(0) output = torch.empty( (int(image.shape[0]), int(y.shape[0]), int(y.shape[1])), dtype=self.default_dtype, device=self.device, ) for id in range(0, int(image.shape[0])): bgval: torch.Tensor = torch.quantile(image[id, :, :], q=1.0 / 100.0) temp = torch.nn.functional.grid_sample( image[id, :, :].unsqueeze(0).unsqueeze(0), normalized_coords, mode="bilinear", padding_mode="zeros", align_corners=False, ) output[id, :, :] = torch.where((idx_x * idx_y) == 0.0, bgval, temp) return output def _argmax_ext(self, array: torch.Tensor, exponent: float | str) -> torch.Tensor: assert array.ndim == 3 if exponent == "inf": ret = self._argmax_2d(array) else: assert isinstance(exponent, float) or isinstance(exponent, int) col = ( torch.arange( 0, array.shape[-2], dtype=self.default_dtype, device=self.device ) .unsqueeze(-1) .unsqueeze(0) ) row = ( torch.arange( 0, array.shape[-1], dtype=self.default_dtype, device=self.device ) .unsqueeze(0) .unsqueeze(0) ) arr2 = torch.pow(array, float(exponent)) arrsum = arr2.sum(dim=-2).sum(dim=-1) ret = torch.zeros( (array.shape[0], 2), dtype=self.default_dtype, device=self.device ) arrprody = (arr2 * col).sum(dim=-1).sum(dim=-1) / arrsum arrprodx = (arr2 * row).sum(dim=-1).sum(dim=-1) / arrsum ret[:, 0] = arrprody.squeeze(-1).squeeze(-1) ret[:, 1] = arrprodx.squeeze(-1).squeeze(-1) idx = torch.where(arrsum == 0.0)[0] ret[idx, :] = 0.0 return ret def _interpolate( self, array: torch.Tensor, rough: torch.Tensor, rad: int = 2 ) -> torch.Tensor: assert array.ndim == 3 assert rough.ndim == 2 rough = torch.round(rough).type(torch.int64) surroundings = self._get_subarr(array, rough, rad) com = self._argmax_ext(surroundings, 1.0) offset = com - rad ret = rough + offset ret += 0.5 ret %= ( torch.tensor(array.shape[-2:], dtype=self.default_dtype, device=self.device) .type(dtype=torch.int64) .unsqueeze(0) ) ret -= 0.5 return ret def _get_success( self, array: torch.Tensor, coord: torch.Tensor, radius: int = 2 ) -> torch.Tensor: assert array.ndim == 3 assert coord.ndim == 2 assert array.shape[0] == coord.shape[0] assert coord.shape[1] == 2 coord = torch.round(coord).type(dtype=torch.int64) subarr = self._get_subarr( array, coord, 2 ) # Not my fault. They want a 2 there. Not radius theval = subarr.sum(dim=-1).sum(dim=-1) theval2 = array[range(0, coord.shape[0]), coord[:, 0], coord[:, 1]] success = torch.sqrt(theval * theval2) return success def _get_constraint_mask( self, shape: torch.Size, log_base: torch.Tensor, constraints_scale_0: torch.Tensor, constraints_scale_1: torch.Tensor | None, constraints_angle_0: torch.Tensor, constraints_angle_1: torch.Tensor | None, ) -> torch.Tensor: assert constraints_scale_0 is not None assert constraints_angle_0 is not None assert constraints_scale_0.ndim == 1 assert constraints_angle_0.ndim == 1 assert constraints_scale_0.shape[0] == constraints_angle_0.shape[0] mask: torch.Tensor = torch.ones( (constraints_scale_0.shape[0], int(shape[-2]), int(shape[-1])), device=self.device, dtype=self.default_dtype, ) scale: torch.Tensor = constraints_scale_0.clone() if constraints_scale_1 is not None: sigma: torch.Tensor | None = constraints_scale_1.clone() else: sigma = None scales = torch.fft.ifftshift( self._get_lograd( torch.tensor(shape[-2:], device=self.device, dtype=self.default_dtype), log_base, ) ) scales *= log_base ** (-shape[-1] / 2.0) scales = scales.unsqueeze(0) - (1.0 / scale).unsqueeze(-1).unsqueeze(-1) if sigma is not None: assert sigma.shape[0] == constraints_scale_0.shape[0] for p_id in range(0, sigma.shape[0]): if sigma[p_id] == 0: ascales = torch.abs(scales[p_id, ...]) scale_min = ascales.min() binary_mask = torch.where(ascales > scale_min, 0.0, 1.0) mask[p_id, ...] *= binary_mask else: mask[p_id, ...] *= torch.exp( -(torch.pow(scales[p_id, ...], 2)) / torch.pow(sigma[p_id], 2) ) angle: torch.Tensor = constraints_angle_0.clone() if constraints_angle_1 is not None: sigma = constraints_angle_1.clone() else: sigma = None angles = self._get_angles( torch.tensor(shape[-2:], device=self.device, dtype=self.default_dtype) ) angles = angles.unsqueeze(0) + torch.deg2rad(angle).unsqueeze(-1).unsqueeze(-1) angles = torch.rad2deg(angles) if sigma is not None: assert sigma.shape[0] == constraints_scale_0.shape[0] for p_id in range(0, sigma.shape[0]): if sigma[p_id] == 0: aangles = torch.abs(angles[p_id, ...]) angle_min = aangles.min() binary_mask = torch.where(aangles > angle_min, 0.0, 1.0) mask[p_id, ...] *= binary_mask else: mask *= torch.exp( -(torch.pow(angles[p_id, ...], 2)) / torch.pow(sigma[p_id], 2) ) mask = torch.fft.fftshift(mask, dim=(-2, -1)) return mask def argmax_angscale( self, array: torch.Tensor, log_base: torch.Tensor, constraints_scale_0: torch.Tensor, constraints_scale_1: torch.Tensor | None, constraints_angle_0: torch.Tensor, constraints_angle_1: torch.Tensor | None, ) -> tuple[torch.Tensor, torch.Tensor]: assert array.ndim == 3 assert constraints_scale_0 is not None assert constraints_angle_0 is not None assert constraints_scale_0.ndim == 1 assert constraints_angle_0.ndim == 1 mask = self._get_constraint_mask( array.shape[-2:], log_base, constraints_scale_0, constraints_scale_1, constraints_angle_0, constraints_angle_1, ) array_orig = array.clone() array *= mask ret = self._argmax_ext(array, self.exponent) ret_final = self._interpolate(array, ret) success = self._get_success(array_orig, ret_final, 0) return ret_final, success def argmax_translation( self, array: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor]: assert array.ndim == 3 array_orig = array.clone() ashape = torch.tensor(array.shape[-2:], device=self.device).type( dtype=torch.int64 ) aporad = (ashape // 6).min() mask2 = self.get_apofield(torch.Size(ashape), aporad).unsqueeze(0) array *= mask2 tvec = self._argmax_ext(array, "inf") tvec = self._interpolate(array_orig, tvec) success = self._get_success(array_orig, tvec, 2) return tvec, success def transform_img( self, img: torch.Tensor, scale: torch.Tensor | None = None, angle: torch.Tensor | None = None, tvec: torch.Tensor | None = None, bgval: torch.Tensor | None = None, ) -> torch.Tensor: assert img.ndim == 3 if scale is None: scale = torch.ones( (img.shape[0],), dtype=self.default_dtype, device=self.device ) assert scale.ndim == 1 assert scale.shape[0] == img.shape[0] if angle is None: angle = torch.zeros( (img.shape[0],), dtype=self.default_dtype, device=self.device ) assert angle.ndim == 1 assert angle.shape[0] == img.shape[0] if tvec is None: tvec = torch.zeros( (img.shape[0], 2), dtype=self.default_dtype, device=self.device ) assert tvec.ndim == 2 assert tvec.shape[0] == img.shape[0] assert tvec.shape[1] == 2 if bgval is None: bgval = self.get_borderval(img) assert bgval.ndim == 1 assert bgval.shape[0] == img.shape[0] # Otherwise we need to decompose it and put it back together assert torch.is_complex(img) is False output = torch.zeros_like(img) for pos in range(0, img.shape[0]): image_processed = img[pos, :, :].unsqueeze(0).clone() temp_shift = [ int(round(tvec[pos, 1].item() * self.scale_factor)), int(round(tvec[pos, 0].item() * self.scale_factor)), ] image_processed = torch.nn.functional.interpolate( image_processed.unsqueeze(0), scale_factor=self.scale_factor, mode="bilinear", ).squeeze(0) image_processed = tv.transforms.functional.affine( img=image_processed, angle=-float(angle[pos]), translate=temp_shift, scale=float(scale[pos]), shear=[0, 0], interpolation=tv.transforms.InterpolationMode.BILINEAR, fill=float(bgval[pos]), center=None, ) image_processed = torch.nn.functional.interpolate( image_processed.unsqueeze(0), scale_factor=1.0 / self.scale_factor, mode="bilinear", ).squeeze(0) image_processed = tv.transforms.functional.center_crop( image_processed, img.shape[-2:] ) output[pos, ...] = image_processed.squeeze(0) return output def transform_img_dict( self, img: torch.Tensor, scale: torch.Tensor | None = None, angle: torch.Tensor | None = None, tvec: torch.Tensor | None = None, bgval: torch.Tensor | None = None, invert=False, ) -> torch.Tensor: if invert: if scale is not None: scale = 1.0 / scale if angle is not None: angle *= -1 if tvec is not None: tvec *= -1 res = self.transform_img(img, scale, angle, tvec, bgval=bgval) return res def _phase_correlation( self, image_reference: torch.Tensor, images_todo: torch.Tensor, callback, *args ) -> tuple[torch.Tensor, torch.Tensor]: assert image_reference.ndim == 3 assert image_reference.shape[0] == 1 assert images_todo.ndim == 3 assert callback is not None image_reference_fft = torch.fft.fft2(image_reference, dim=(-2, -1)) images_todo_fft = torch.fft.fft2(images_todo, dim=(-2, -1)) eps = torch.abs(images_todo_fft).max(dim=-1)[0].max(dim=-1)[0] * 1e-15 cps = abs( torch.fft.ifft2( (image_reference_fft * images_todo_fft.conj()) / ( torch.abs(image_reference_fft) * torch.abs(images_todo_fft) + eps.unsqueeze(-1).unsqueeze(-1) ), dim=(-2, -1), ) ) scps = torch.fft.fftshift(cps, dim=(-2, -1)) ret, success = callback(scps, *args) ret[:, 0] -= image_reference_fft.shape[-2] // 2 ret[:, 1] -= image_reference_fft.shape[-1] // 2 return ret, success def _translation( self, im0: torch.Tensor, im1: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor]: assert im0.ndim == 2 ret, succ = self._phase_correlation( im0.unsqueeze(0), im1, self.argmax_translation ) return ret, succ def _get_ang_scale( self, image_reference: torch.Tensor, images_todo: torch.Tensor, constraints_scale_0: torch.Tensor, constraints_scale_1: torch.Tensor | None, constraints_angle_0: torch.Tensor, constraints_angle_1: torch.Tensor | None, ) -> tuple[torch.Tensor, torch.Tensor]: assert image_reference.ndim == 2 assert images_todo.ndim == 3 assert image_reference.shape[-1] == images_todo.shape[-1] assert image_reference.shape[-2] == images_todo.shape[-2] assert constraints_scale_0.shape[0] == images_todo.shape[0] assert constraints_angle_0.shape[0] == images_todo.shape[0] if constraints_scale_1 is not None: assert constraints_scale_1.shape[0] == images_todo.shape[0] if constraints_angle_1 is not None: assert constraints_angle_1.shape[0] == images_todo.shape[0] if self.image_reference_dft is None: image_reference_apod = self._apodize(image_reference.unsqueeze(0)) self.image_reference_dft = torch.fft.fftshift( torch.fft.fft2(image_reference_apod, dim=(-2, -1)), dim=(-2, -1) ) self.filt = self._logpolar_filter(image_reference.shape).unsqueeze(0) self.image_reference_dft *= self.filt self.pcorr_shape = torch.tensor( self._get_pcorr_shape(image_reference.shape[-2:]), dtype=self.default_dtype, device=self.device, ) self.log_base = self._get_log_base( image_reference.shape, self.pcorr_shape[1], ) self.image_reference_logp = self._logpolar( torch.abs(self.image_reference_dft), self.pcorr_shape, self.log_base ) images_todo_apod = self._apodize(images_todo) images_todo_dft = torch.fft.fftshift( torch.fft.fft2(images_todo_apod, dim=(-2, -1)), dim=(-2, -1) ) images_todo_dft *= self.filt images_todo_lopg = self._logpolar( torch.abs(images_todo_dft), self.pcorr_shape, self.log_base ) temp, _ = self._phase_correlation( self.image_reference_logp, images_todo_lopg, self.argmax_angscale, self.log_base, constraints_scale_0, constraints_scale_1, constraints_angle_0, constraints_angle_1, ) arg_ang = temp[:, 0].clone() arg_rad = temp[:, 1].clone() angle = -torch.pi * arg_ang / float(self.pcorr_shape[0]) angle = torch.rad2deg(angle) angle = self.wrap_angle(angle, 360) scale = torch.pow(self.log_base, arg_rad) angle = -angle scale = 1.0 / scale assert torch.where(scale < 2)[0].shape[0] == scale.shape[0] assert torch.where(scale > 0.5)[0].shape[0] == scale.shape[0] return scale, angle def translation( self, im0: torch.Tensor, im1: torch.Tensor ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: angle = torch.zeros( (im1.shape[0]), dtype=self.default_dtype, device=self.device ) assert im1.ndim == 3 assert im0.shape[-2] == im1.shape[-2] assert im0.shape[-1] == im1.shape[-1] tvec, succ = self._translation(im0, im1) tvec2, succ2 = self._translation(im0, torch.rot90(im1, k=2, dims=[-2, -1])) assert tvec.shape[0] == tvec2.shape[0] assert tvec.ndim == 2 assert tvec2.ndim == 2 assert tvec.shape[1] == 2 assert tvec2.shape[1] == 2 assert succ.shape[0] == succ2.shape[0] assert succ.ndim == 1 assert succ2.ndim == 1 assert tvec.shape[0] == succ.shape[0] assert angle.shape[0] == tvec.shape[0] assert angle.ndim == 1 for pos in range(0, angle.shape[0]): pick_rotated = False if succ2[pos] > succ[pos]: pick_rotated = True if pick_rotated: tvec[pos, :] = tvec2[pos, :] succ[pos] = succ2[pos] angle[pos] += 180 return tvec, succ, angle def _similarity( self, image_reference: torch.Tensor, images_todo: torch.Tensor, bgval: torch.Tensor, ): assert image_reference.ndim == 2 assert images_todo.ndim == 3 assert image_reference.shape[-1] == images_todo.shape[-1] assert image_reference.shape[-2] == images_todo.shape[-2] # We are going to iterate and precise scale and angle estimates scale: torch.Tensor = torch.ones( (images_todo.shape[0]), dtype=self.default_dtype, device=self.device ) angle: torch.Tensor = torch.zeros( (images_todo.shape[0]), dtype=self.default_dtype, device=self.device ) constraints_dynamic_angle_0: torch.Tensor = torch.zeros( (images_todo.shape[0]), dtype=self.default_dtype, device=self.device ) constraints_dynamic_angle_1: torch.Tensor | None = None constraints_dynamic_scale_0: torch.Tensor = torch.ones( (images_todo.shape[0]), dtype=self.default_dtype, device=self.device ) constraints_dynamic_scale_1: torch.Tensor | None = None newscale, newangle = self._get_ang_scale( image_reference, images_todo, constraints_dynamic_scale_0, constraints_dynamic_scale_1, constraints_dynamic_angle_0, constraints_dynamic_angle_1, ) scale *= newscale angle += newangle im2 = self.transform_img(images_todo, scale, angle, bgval=bgval) tvec, self.success, res_angle = self.translation(image_reference, im2) angle += res_angle angle = self.wrap_angle(angle, 360) return scale, angle, tvec def similarity( self, image_reference: torch.Tensor, images_todo: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: assert image_reference.ndim == 2 assert images_todo.ndim == 3 bgval: torch.Tensor = self.get_borderval(img=images_todo, radius=5) scale, angle, tvec = self._similarity( image_reference, images_todo, bgval, ) im2 = self.transform_img_dict( img=images_todo, scale=scale, angle=angle, tvec=tvec, bgval=bgval, ) return scale, angle, tvec, im2