import numpy as np import matplotlib.pyplot as plt import os from functions.create_logger import create_logger from functions.load_config import load_config from functions.get_trials import get_trials import h5py # type: ignore import torch control_file_handle = h5py.File("ROI_control_49.mat", "r") control_roi = (np.array(control_file_handle["roi"]).T) > 0 control_file_handle.close() control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1])) s_darken_file_handle = h5py.File("ROI_sDarken_49.mat", "r") s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0 s_darken_file_handle.close() s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1])) mylogger = create_logger( save_logging_messages=True, display_logging_messages=True, log_stage_name="test_xxx" ) config = load_config(mylogger=mylogger) experiment_id: int = 1 raw_data_path: str = os.path.join( config["basic_path"], config["recoding_data"], config["mouse_identifier"], config["raw_path"], ) data_path: str = "output" trails = get_trials(path=raw_data_path, experiment_id=experiment_id) for i in range(0, trails.shape[0]): trial_id = int(trails[i]) experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}" mylogger.info(f"Loading files for {experiment_name}") data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz")) rs = data["ratio_sequence"] rs = rs.reshape((rs.shape[0] * rs.shape[1], rs.shape[2])) rs_c = rs[control_roi, :] rs_c_core, _, _ = torch.linalg.svd(torch.tensor(rs_c.T), full_matrices=False) rs_c_core = rs_c_core[:, 0].numpy() rs_s = rs[s_darken_roi, :] rs_s_core, _, _ = torch.linalg.svd(torch.tensor(rs_s.T), full_matrices=False) rs_s_core = rs_s_core[:, 0].numpy() rs_s_core -= rs_s_core.mean(keepdims=True) rs_c_core -= rs_c_core.mean(keepdims=True) rs_c_core *= (rs_s_core * rs_c_core).sum() / (rs_c_core**2).sum() if i == 0: ratio_sequence = rs_s_core - rs_c_core else: ratio_sequence += rs_s_core - rs_c_core ratio_sequence /= float(trails.shape[0]) t = np.arange(0, ratio_sequence.shape[0]) / 100.0 plt.plot(t, ratio_sequence, label="sDarken-control") plt.legend() plt.xlabel("Time [sec]") plt.show()