214 lines
6.4 KiB
Python
214 lines
6.4 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import os
|
|
from functions.create_logger import create_logger
|
|
from functions.load_config import load_config
|
|
|
|
from functions.get_trials import get_trials
|
|
import h5py # type: ignore
|
|
import torch
|
|
import scipy # type: ignore
|
|
import argh
|
|
from functions.data_raw_loader import data_raw_loader
|
|
|
|
|
|
def main(
|
|
*,
|
|
experiment_id: int = 4,
|
|
config_filename: str = "config.json",
|
|
highpass_freqency: float = 0.5,
|
|
lowpass_freqency: float = 10.0,
|
|
butter_worth_order: int = 4,
|
|
log_stage_name: str = "olivia",
|
|
plot_show: bool = True,
|
|
) -> None:
|
|
|
|
mylogger = create_logger(
|
|
save_logging_messages=True,
|
|
display_logging_messages=True,
|
|
log_stage_name=log_stage_name,
|
|
)
|
|
config = load_config(mylogger=mylogger, filename=config_filename)
|
|
|
|
roi_path: str = config["ref_image_path"]
|
|
|
|
control_file_handle = h5py.File(os.path.join(roi_path, "ROI_control.mat"), "r")
|
|
control_roi = (np.array(control_file_handle["roi"]).T) > 0
|
|
control_file_handle.close()
|
|
control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1]))
|
|
|
|
s_darken_file_handle = h5py.File(os.path.join(roi_path, "ROI_sDarken.mat"), "r")
|
|
s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0
|
|
s_darken_file_handle.close()
|
|
s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1]))
|
|
|
|
raw_data_path: str = os.path.join(
|
|
config["basic_path"],
|
|
config["recoding_data"],
|
|
config["mouse_identifier"],
|
|
config["raw_path"],
|
|
)
|
|
|
|
data_path: str = str(config["export_path"])
|
|
|
|
trails = get_trials(path=raw_data_path, experiment_id=experiment_id)
|
|
for i in range(0, trails.shape[0]):
|
|
trial_id = int(trails[i])
|
|
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
|
|
mylogger.info(f"Loading files for {experiment_name}")
|
|
|
|
data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz"))
|
|
if i == 0:
|
|
ratio_sequence = data["ratio_sequence"]
|
|
else:
|
|
ratio_sequence += data["ratio_sequence"]
|
|
|
|
ratio_sequence /= float(trails.shape[0])
|
|
|
|
ratio_sequence = ratio_sequence.reshape(
|
|
(ratio_sequence.shape[0] * ratio_sequence.shape[1], ratio_sequence.shape[2])
|
|
)
|
|
|
|
control = ratio_sequence[control_roi, :].mean(axis=0)
|
|
s_darken = ratio_sequence[s_darken_roi, :].mean(axis=0)
|
|
|
|
max_value = max(
|
|
[
|
|
control[config["skip_frames_in_the_beginning"] :].max(),
|
|
s_darken[config["skip_frames_in_the_beginning"] :].max(),
|
|
]
|
|
)
|
|
min_value = min(
|
|
[
|
|
control[config["skip_frames_in_the_beginning"] :].min(),
|
|
s_darken[config["skip_frames_in_the_beginning"] :].min(),
|
|
]
|
|
)
|
|
|
|
first_trial_id: int = int(get_trials(raw_data_path, experiment_id).min())
|
|
(
|
|
meta_channels,
|
|
meta_mouse_markings,
|
|
meta_recording_date,
|
|
meta_stimulation_times,
|
|
meta_experiment_names,
|
|
meta_trial_recording_duration,
|
|
meta_frame_time,
|
|
meta_mouse,
|
|
data,
|
|
) = data_raw_loader(
|
|
raw_data_path=raw_data_path,
|
|
mylogger=mylogger,
|
|
experiment_id=experiment_id,
|
|
trial_id=first_trial_id,
|
|
device=torch.device("cpu"),
|
|
force_to_cpu_memory=True,
|
|
config=config,
|
|
)
|
|
|
|
idx = config["required_order"].index("acceptor")
|
|
acceptor = data[..., idx].mean(axis=0).mean(axis=0)
|
|
acceptor -= acceptor[config["skip_frames_in_the_beginning"] :].min()
|
|
acceptor /= acceptor[config["skip_frames_in_the_beginning"] :].max()
|
|
|
|
acceptor_f0 = acceptor.clone()
|
|
acceptor_f0 *= max_value - min_value
|
|
acceptor_f0 += min_value
|
|
|
|
b, a = scipy.signal.butter(
|
|
butter_worth_order,
|
|
lowpass_freqency,
|
|
btype="low",
|
|
output="ba",
|
|
fs=1.0 / meta_frame_time,
|
|
)
|
|
control_f1 = scipy.signal.filtfilt(b, a, control)
|
|
s_darken_f1 = scipy.signal.filtfilt(b, a, s_darken)
|
|
|
|
b, a = scipy.signal.butter(
|
|
butter_worth_order,
|
|
highpass_freqency,
|
|
btype="high",
|
|
output="ba",
|
|
fs=1.0 / meta_frame_time,
|
|
)
|
|
control_f1 = scipy.signal.filtfilt(b, a, control_f1)
|
|
s_darken_f1 = scipy.signal.filtfilt(b, a, s_darken_f1)
|
|
|
|
max_value = max(
|
|
[
|
|
control_f1[config["skip_frames_in_the_beginning"] :].max(),
|
|
s_darken_f1[config["skip_frames_in_the_beginning"] :].max(),
|
|
]
|
|
)
|
|
min_value = min(
|
|
[
|
|
control_f1[config["skip_frames_in_the_beginning"] :].min(),
|
|
s_darken_f1[config["skip_frames_in_the_beginning"] :].min(),
|
|
]
|
|
)
|
|
|
|
acceptor_f1 = acceptor.clone()
|
|
acceptor_f1 *= max_value - min_value
|
|
acceptor_f1 += min_value
|
|
|
|
t = np.arange(0, control.shape[0]) / 100.0
|
|
|
|
plt.figure(figsize=(10, 10))
|
|
plt.subplot(2, 1, 1)
|
|
plt.plot(
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
acceptor_f0[config["skip_frames_in_the_beginning"] :],
|
|
color=(0.5, 0.5, 0.5),
|
|
label="light (acceptor)",
|
|
)
|
|
|
|
plt.plot(
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
control[config["skip_frames_in_the_beginning"] :],
|
|
label="control",
|
|
)
|
|
plt.plot(
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
s_darken[config["skip_frames_in_the_beginning"] :],
|
|
label="sDarken",
|
|
)
|
|
plt.title(
|
|
f"Experiment {experiment_id} {config['recoding_data']} {config['mouse_identifier']}"
|
|
)
|
|
|
|
plt.legend()
|
|
plt.xlabel("Time [sec]")
|
|
|
|
plt.subplot(2, 1, 2)
|
|
|
|
plt.plot(
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
acceptor_f1[config["skip_frames_in_the_beginning"] :],
|
|
color=(0.5, 0.5, 0.5),
|
|
label="light (acceptor)",
|
|
)
|
|
|
|
plt.plot(
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
control_f1[config["skip_frames_in_the_beginning"] :],
|
|
label=f"control ({highpass_freqency}Hz - {lowpass_freqency}Hz)",
|
|
)
|
|
plt.plot(
|
|
t[config["skip_frames_in_the_beginning"] :],
|
|
s_darken_f1[config["skip_frames_in_the_beginning"] :],
|
|
label=f"sDarken ({highpass_freqency}Hz - {lowpass_freqency}Hz)",
|
|
)
|
|
|
|
plt.legend()
|
|
plt.xlabel("Time [sec]")
|
|
plt.savefig(
|
|
f"olivia_both_Exp{experiment_id}_{config['recoding_data']}_{config['mouse_identifier']}.png",
|
|
dpi=300,
|
|
)
|
|
if plot_show:
|
|
plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
argh.dispatch_command(main)
|