1835 lines
67 KiB
Python
1835 lines
67 KiB
Python
# pip install roipoly natsort numpy matplotlib
|
|
# Also install: torch torchaudio torchvision
|
|
# (for details see https://pytorch.org/get-started/locally/ )
|
|
# Tested on Python 3.11
|
|
|
|
import glob
|
|
import json
|
|
import logging
|
|
import math
|
|
import os
|
|
from datetime import datetime
|
|
|
|
import matplotlib.pyplot as plt
|
|
import natsort
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio as ta
|
|
import torchvision as tv
|
|
from roipoly import RoiPoly
|
|
|
|
from ImageAlignment import ImageAlignment
|
|
|
|
|
|
class DataContainer(torch.nn.Module):
|
|
ref_image_acceptor: torch.Tensor | None = None
|
|
ref_image_donor: torch.Tensor | None = None
|
|
|
|
acceptor: torch.Tensor | None = None
|
|
donor: torch.Tensor | None = None
|
|
oxygenation: torch.Tensor | None = None
|
|
volume: torch.Tensor | None = None
|
|
|
|
acceptor_whiten_mean: torch.Tensor | None = None
|
|
acceptor_whiten_k: torch.Tensor | None = None
|
|
acceptor_eigenvalues: torch.Tensor | None = None
|
|
acceptor_residuum: torch.Tensor | None = None
|
|
|
|
donor_whiten_mean: torch.Tensor | None = None
|
|
donor_whiten_k: torch.Tensor | None = None
|
|
donor_eigenvalues: torch.Tensor | None = None
|
|
donor_residuum: torch.Tensor | None = None
|
|
|
|
oxygenation_whiten_mean: torch.Tensor | None = None
|
|
oxygenation_whiten_k: torch.Tensor | None = None
|
|
oxygenation_eigenvalues: torch.Tensor | None = None
|
|
oxygenation_residuum: torch.Tensor | None = None
|
|
|
|
volume_whiten_mean: torch.Tensor | None = None
|
|
volume_whiten_k: torch.Tensor | None = None
|
|
volume_eigenvalues: torch.Tensor | None = None
|
|
volume_residuum: torch.Tensor | None = None
|
|
|
|
acceptor_scale: torch.Tensor | None = None
|
|
donor_scale: torch.Tensor | None = None
|
|
oxygenation_scale: torch.Tensor | None = None
|
|
volume_scale: torch.Tensor | None = None
|
|
|
|
# -------
|
|
image_alignment: ImageAlignment
|
|
|
|
acceptor_index: int
|
|
donor_index: int
|
|
oxygenation_index: int
|
|
volume_index: int
|
|
|
|
path: str
|
|
channels: list[str]
|
|
device: torch.device
|
|
|
|
batch_size: int = 200
|
|
|
|
fill_value: float = -0.1
|
|
|
|
filtfilt_chuck_size: int = 10
|
|
|
|
level0 = str("=")
|
|
level1 = str("==")
|
|
level2 = str("===")
|
|
level3 = str("====")
|
|
|
|
@torch.no_grad()
|
|
def __init__(
|
|
self,
|
|
path: str,
|
|
device: torch.device,
|
|
display_logging_messages: bool = False,
|
|
save_logging_messages: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.device = device
|
|
|
|
assert path is not None
|
|
self.path = path
|
|
now = datetime.now()
|
|
dt_string_filename = now.strftime("%Y_%m_%d_%H_%M_%S")
|
|
|
|
self.logger = logging.getLogger("DataContainer")
|
|
self.logger.setLevel(logging.DEBUG)
|
|
|
|
if save_logging_messages:
|
|
time_format = "%b %-d %Y %H:%M:%S"
|
|
logformat = "%(asctime)s %(message)s"
|
|
file_formatter = logging.Formatter(fmt=logformat, datefmt=time_format)
|
|
|
|
file_handler = logging.FileHandler(f"log_{dt_string_filename}.txt")
|
|
file_handler.setLevel(logging.INFO)
|
|
file_handler.setFormatter(file_formatter)
|
|
self.logger.addHandler(file_handler)
|
|
|
|
if display_logging_messages:
|
|
time_format = "%b %-d %Y %H:%M:%S"
|
|
logformat = "%(asctime)s %(message)s"
|
|
stream_formatter = logging.Formatter(fmt=logformat, datefmt=time_format)
|
|
|
|
stream_handler = logging.StreamHandler()
|
|
stream_handler.setLevel(logging.INFO)
|
|
stream_handler.setFormatter(stream_formatter)
|
|
self.logger.addHandler(stream_handler)
|
|
|
|
file_input_ref_image = self._find_ref_image_file()
|
|
|
|
data = np.load(file_input_ref_image, mmap_mode="r")
|
|
ref_image = torch.tensor(
|
|
data[:, :, data.shape[2] // 2, :].astype(np.float32),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
|
|
json_postfix: str = "_meta.txt"
|
|
found_name_json: str = file_input_ref_image.replace(".npy", json_postfix)
|
|
|
|
assert os.path.isfile(found_name_json)
|
|
|
|
with open(found_name_json, "r") as file_handle:
|
|
metadata = json.load(file_handle)
|
|
self.channels = metadata["channelKey"]
|
|
|
|
self.acceptor_index = self.channels.index("acceptor")
|
|
self.donor_index = self.channels.index("donor")
|
|
self.oxygenation_index = self.channels.index("oxygenation")
|
|
self.volume_index = self.channels.index("volume")
|
|
|
|
self.ref_image_acceptor: torch.Tensor = ref_image[:, :, self.acceptor_index]
|
|
self.ref_image_donor: torch.Tensor = ref_image[:, :, self.donor_index]
|
|
|
|
self.image_alignment = ImageAlignment(
|
|
default_dtype=torch.float32, device=self.device
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def get_trials(self, experiment_id: int) -> torch.Tensor:
|
|
filename_np: str = os.path.join(
|
|
self.path,
|
|
f"Exp{experiment_id:03d}_Trial*_Part001.npy",
|
|
)
|
|
|
|
list_str = glob.glob(filename_np)
|
|
list_int: list[int] = []
|
|
for i in range(0, len(list_str)):
|
|
list_int.append(int(list_str[i].split("_Trial")[-1].split("_Part")[0]))
|
|
list_int = sorted(list_int)
|
|
return torch.tensor(list_int).unique()
|
|
|
|
@torch.no_grad()
|
|
def get_experiments(
|
|
self,
|
|
) -> torch.Tensor:
|
|
filename_np: str = os.path.join(
|
|
self.path,
|
|
"Exp*_Part001.npy",
|
|
)
|
|
|
|
list_str = glob.glob(filename_np)
|
|
list_int: list[int] = []
|
|
for i in range(0, len(list_str)):
|
|
list_int.append(int(list_str[i].split("Exp")[-1].split("_Trial")[0]))
|
|
list_int = sorted(list_int)
|
|
|
|
return torch.tensor(list_int).unique()
|
|
|
|
@torch.no_grad()
|
|
def load_data( # start_position_coefficients: OK
|
|
self,
|
|
experiment_id: int,
|
|
trial_id: int,
|
|
align: bool = True,
|
|
enable_secondary_data: bool = True,
|
|
mmap_mode: bool = True,
|
|
start_position_coefficients: int = 0,
|
|
):
|
|
self.acceptor = None
|
|
self.donor = None
|
|
self.oxygenation = None
|
|
self.volume = None
|
|
|
|
part_id: int = 1
|
|
filename_np: str = os.path.join(
|
|
self.path,
|
|
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}.npy",
|
|
)
|
|
|
|
filename_meta: str = os.path.join(
|
|
self.path,
|
|
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}_meta.txt",
|
|
)
|
|
|
|
while (os.path.isfile(filename_np)) and (os.path.isfile(filename_meta)):
|
|
self.logger.info(f"{self.level3} work in {filename_np}")
|
|
# Check if channel asignment is still okay
|
|
with open(filename_meta, "r") as file_handle:
|
|
metadata = json.load(file_handle)
|
|
channels = metadata["channelKey"]
|
|
|
|
assert len(channels) == len(self.channels)
|
|
for i in range(0, len(channels)):
|
|
assert channels[i] == self.channels[i]
|
|
|
|
# Load the data...
|
|
self.logger.info(f"{self.level3} np.load")
|
|
if mmap_mode:
|
|
temp: np.ndarray = np.load(filename_np, mmap_mode="r")
|
|
else:
|
|
temp = np.load(filename_np)
|
|
|
|
self.logger.info(f"{self.level3} organize acceptor")
|
|
if self.acceptor is None:
|
|
self.acceptor = torch.tensor(
|
|
temp[:, :, :, self.acceptor_index].astype(np.float32),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
|
|
else:
|
|
assert self.acceptor is not None
|
|
assert self.acceptor.ndim == temp.ndim
|
|
assert self.acceptor.shape[0] == temp.shape[0]
|
|
assert self.acceptor.shape[1] == temp.shape[1]
|
|
assert self.acceptor.shape[3] == temp.shape[3]
|
|
self.acceptor = torch.cat(
|
|
(
|
|
self.acceptor,
|
|
torch.tensor(
|
|
temp[:, :, :, self.acceptor_index].astype(np.float32),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
),
|
|
),
|
|
dim=2,
|
|
)
|
|
|
|
self.logger.info(f"{self.level3} organize donor")
|
|
if self.donor is None:
|
|
self.donor = torch.tensor(
|
|
temp[:, :, :, self.donor_index].astype(np.float32),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
|
|
else:
|
|
assert self.donor is not None
|
|
assert self.donor.ndim == temp.ndim
|
|
assert self.donor.shape[0] == temp.shape[0]
|
|
assert self.donor.shape[1] == temp.shape[1]
|
|
assert self.donor.shape[3] == temp.shape[3]
|
|
self.donor = torch.cat(
|
|
(
|
|
self.donor,
|
|
torch.tensor(
|
|
temp[:, :, :, self.donor_index].astype(np.float32),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
),
|
|
),
|
|
dim=2,
|
|
)
|
|
|
|
if enable_secondary_data:
|
|
self.logger.info(f"{self.level3} organize oxygenation")
|
|
if self.oxygenation is None:
|
|
self.oxygenation = torch.tensor(
|
|
temp[:, :, :, self.oxygenation_index].astype(np.float32),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
else:
|
|
assert self.oxygenation is not None
|
|
assert self.oxygenation.ndim == temp.ndim
|
|
assert self.oxygenation.shape[0] == temp.shape[0]
|
|
assert self.oxygenation.shape[1] == temp.shape[1]
|
|
assert self.oxygenation.shape[3] == temp.shape[3]
|
|
self.oxygenation = torch.cat(
|
|
(
|
|
self.oxygenation,
|
|
torch.tensor(
|
|
temp[:, :, :, self.oxygenation_index].astype(
|
|
np.float32
|
|
),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
),
|
|
),
|
|
dim=2,
|
|
)
|
|
|
|
if self.volume is None:
|
|
self.logger.info(f"{self.level3} organize volume")
|
|
self.volume = torch.tensor(
|
|
temp[:, :, :, self.volume_index].astype(np.float32),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
else:
|
|
assert self.volume is not None
|
|
assert self.volume.ndim == temp.ndim
|
|
assert self.volume.shape[0] == temp.shape[0]
|
|
assert self.volume.shape[1] == temp.shape[1]
|
|
assert self.volume.shape[3] == temp.shape[3]
|
|
self.volume = torch.cat(
|
|
(
|
|
self.volume,
|
|
torch.tensor(
|
|
temp[:, :, :, self.volume_index].astype(np.float32),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
),
|
|
),
|
|
dim=2,
|
|
)
|
|
|
|
part_id += 1
|
|
filename_np = os.path.join(
|
|
self.path,
|
|
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}.npy",
|
|
)
|
|
filename_meta = os.path.join(
|
|
self.path,
|
|
f"Exp{experiment_id:03d}_Trial{trial_id:03d}_Part{part_id:03d}_meta.txt",
|
|
)
|
|
|
|
self.logger.info(f"{self.level3} move axis")
|
|
assert self.acceptor is not None
|
|
assert self.donor is not None
|
|
self.acceptor = self.acceptor.moveaxis(-1, 0)
|
|
self.donor = self.donor.moveaxis(-1, 0)
|
|
|
|
if enable_secondary_data:
|
|
assert self.oxygenation is not None
|
|
assert self.volume is not None
|
|
self.oxygenation = self.oxygenation.moveaxis(-1, 0)
|
|
self.volume = self.volume.moveaxis(-1, 0)
|
|
|
|
if align:
|
|
self.logger.info(f"{self.level3} move intra timeseries")
|
|
self._move_intra_timeseries(
|
|
enable_secondary_data=enable_secondary_data,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
self.logger.info(f"{self.level3} rotate inter timeseries")
|
|
self._rotate_inter_timeseries(
|
|
enable_secondary_data=enable_secondary_data,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
self.logger.info(f"{self.level3} move inter timeseries")
|
|
self._move_inter_timeseries(
|
|
enable_secondary_data=enable_secondary_data,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
# reset svd
|
|
self.acceptor_whiten_mean = None
|
|
self.acceptor_whiten_k = None
|
|
self.acceptor_eigenvalues = None
|
|
|
|
self.donor_whiten_mean = None
|
|
self.donor_whiten_k = None
|
|
self.donor_eigenvalues = None
|
|
|
|
self.oxygenation_whiten_mean = None
|
|
self.oxygenation_whiten_k = None
|
|
self.oxygenation_eigenvalues = None
|
|
|
|
self.volume_whiten_mean = None
|
|
self.volume_whiten_k = None
|
|
self.volume_eigenvalues = None
|
|
|
|
@torch.no_grad()
|
|
def _find_ref_image_file(self) -> str:
|
|
filename_postfix: str = "Exp*.npy"
|
|
new_list = glob.glob(os.path.join(self.path, filename_postfix))
|
|
new_list = natsort.natsorted(new_list)
|
|
|
|
found_name: str | None = None
|
|
for filename in new_list:
|
|
if (filename.find("Trial") != -1) and (filename.find("Part") != -1):
|
|
found_name = filename
|
|
break
|
|
assert found_name is not None
|
|
|
|
return found_name
|
|
|
|
@torch.no_grad()
|
|
def _calculate_translation( # start_position_coefficients: OK
|
|
self,
|
|
input: torch.Tensor,
|
|
reference_image: torch.Tensor,
|
|
start_position_coefficients: int = 0,
|
|
) -> torch.Tensor:
|
|
tvec = torch.zeros((input.shape[0], 2))
|
|
|
|
data_loader = torch.utils.data.DataLoader(
|
|
torch.utils.data.TensorDataset(input[start_position_coefficients:, ...]),
|
|
batch_size=self.batch_size,
|
|
shuffle=False,
|
|
)
|
|
start_position: int = 0
|
|
for input_batch in data_loader:
|
|
assert len(input_batch) == 1
|
|
|
|
end_position = start_position + input_batch[0].shape[0]
|
|
|
|
tvec_temp = self.image_alignment.dry_run_translation(
|
|
input=input_batch[0],
|
|
new_reference_image=reference_image,
|
|
)
|
|
|
|
assert tvec_temp is not None
|
|
|
|
tvec[start_position:end_position, :] = tvec_temp
|
|
|
|
start_position += input_batch[0].shape[0]
|
|
|
|
tvec = torch.round(torch.median(tvec, dim=0)[0])
|
|
return tvec
|
|
|
|
@torch.no_grad()
|
|
def _calculate_rotation( # start_position_coefficients: OK
|
|
self,
|
|
input: torch.Tensor,
|
|
reference_image: torch.Tensor,
|
|
start_position_coefficients: int = 0,
|
|
) -> torch.Tensor:
|
|
angle = torch.zeros((input.shape[0]))
|
|
|
|
data_loader = torch.utils.data.DataLoader(
|
|
torch.utils.data.TensorDataset(input[start_position_coefficients:, ...]),
|
|
batch_size=self.batch_size,
|
|
shuffle=False,
|
|
)
|
|
start_position: int = 0
|
|
for input_batch in data_loader:
|
|
assert len(input_batch) == 1
|
|
|
|
end_position = start_position + input_batch[0].shape[0]
|
|
|
|
angle_temp = self.image_alignment.dry_run_angle(
|
|
input=input_batch[0],
|
|
new_reference_image=reference_image,
|
|
)
|
|
|
|
assert angle_temp is not None
|
|
|
|
angle[start_position:end_position] = angle_temp
|
|
|
|
start_position += input_batch[0].shape[0]
|
|
|
|
angle = torch.where(angle >= 180, 360.0 - angle, angle)
|
|
angle = torch.where(angle <= -180, 360.0 + angle, angle)
|
|
angle = torch.median(angle, dim=0)[0]
|
|
|
|
return angle
|
|
|
|
@torch.no_grad()
|
|
def _move_intra_timeseries( # start_position_coefficients: OK
|
|
self,
|
|
enable_secondary_data: bool = True,
|
|
start_position_coefficients: int = 0,
|
|
) -> None:
|
|
# donor_volume
|
|
assert self.donor is not None
|
|
assert self.ref_image_donor is not None
|
|
tvec_donor = self._calculate_translation(
|
|
self.donor,
|
|
self.ref_image_donor,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
self.donor = tv.transforms.functional.affine(
|
|
img=self.donor,
|
|
angle=0,
|
|
translate=[tvec_donor[1], tvec_donor[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
fill=self.fill_value,
|
|
)
|
|
|
|
if enable_secondary_data:
|
|
assert self.volume is not None
|
|
self.volume = tv.transforms.functional.affine(
|
|
img=self.volume,
|
|
angle=0,
|
|
translate=[tvec_donor[1], tvec_donor[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
fill=self.fill_value,
|
|
)
|
|
|
|
# acceptor_oxy
|
|
assert self.acceptor is not None
|
|
assert self.ref_image_acceptor is not None
|
|
tvec_acceptor = self._calculate_translation(
|
|
self.acceptor,
|
|
self.ref_image_acceptor,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
self.acceptor = tv.transforms.functional.affine(
|
|
img=self.acceptor,
|
|
angle=0,
|
|
translate=[tvec_acceptor[1], tvec_acceptor[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
fill=self.fill_value,
|
|
)
|
|
if enable_secondary_data:
|
|
assert self.oxygenation is not None
|
|
self.oxygenation = tv.transforms.functional.affine(
|
|
img=self.oxygenation,
|
|
angle=0,
|
|
translate=[tvec_acceptor[1], tvec_acceptor[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
fill=self.fill_value,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def _move_inter_timeseries( # start_position_coefficients: OK
|
|
self,
|
|
enable_secondary_data: bool = True,
|
|
start_position_coefficients: int = 0,
|
|
) -> None:
|
|
# acceptor_oxy
|
|
assert self.acceptor is not None
|
|
assert self.ref_image_donor is not None
|
|
tvec = self._calculate_translation(
|
|
self.acceptor,
|
|
self.ref_image_donor,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
self.acceptor = tv.transforms.functional.affine(
|
|
img=self.acceptor,
|
|
angle=0,
|
|
translate=[tvec[1], tvec[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
fill=self.fill_value,
|
|
)
|
|
|
|
if enable_secondary_data:
|
|
assert self.oxygenation is not None
|
|
self.oxygenation = tv.transforms.functional.affine(
|
|
img=self.oxygenation,
|
|
angle=0,
|
|
translate=[tvec[1], tvec[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
fill=self.fill_value,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def _rotate_inter_timeseries( # start_position_coefficients: OK
|
|
self,
|
|
enable_secondary_data: bool = True,
|
|
start_position_coefficients: int = 0,
|
|
) -> None:
|
|
# acceptor_oxy
|
|
assert self.acceptor is not None
|
|
assert self.ref_image_donor is not None
|
|
angle = self._calculate_rotation(
|
|
self.acceptor,
|
|
self.ref_image_donor,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
self.acceptor = tv.transforms.functional.affine(
|
|
img=self.acceptor,
|
|
angle=-float(angle),
|
|
translate=[0, 0],
|
|
scale=1.0,
|
|
shear=0,
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
fill=self.fill_value,
|
|
)
|
|
|
|
if enable_secondary_data:
|
|
assert self.oxygenation is not None
|
|
self.oxygenation = tv.transforms.functional.affine(
|
|
img=self.oxygenation,
|
|
angle=-float(angle),
|
|
translate=[0, 0],
|
|
scale=1.0,
|
|
shear=0,
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
fill=self.fill_value,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def _svd( # start_position_coefficients: OK
|
|
self,
|
|
input: torch.Tensor,
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
start_position_coefficients: int = 0,
|
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
selection = torch.flatten(
|
|
input[start_position_coefficients:, ...].clone().movedim(0, -1),
|
|
start_dim=0,
|
|
end_dim=1,
|
|
)
|
|
whiten_mean = torch.mean(selection, dim=-1)
|
|
selection -= whiten_mean.unsqueeze(-1)
|
|
whiten_mean = whiten_mean.reshape((input.shape[1], input.shape[2]))
|
|
|
|
if lowrank_method is False:
|
|
svd_u, svd_s, _ = torch.linalg.svd(selection, full_matrices=False)
|
|
else:
|
|
svd_u, svd_s, _ = torch.svd_lowrank(selection, q=lowrank_q)
|
|
|
|
whiten_k = (
|
|
torch.sign(svd_u[0, :]).unsqueeze(0) * svd_u / (svd_s.unsqueeze(0) + 1e-20)
|
|
)
|
|
whiten_k = whiten_k.reshape((input.shape[1], input.shape[2], svd_s.shape[0]))
|
|
eigenvalues = svd_s
|
|
|
|
return whiten_mean, whiten_k, eigenvalues
|
|
|
|
@torch.no_grad()
|
|
def _to_remove( # start_position_coefficients: OK
|
|
self,
|
|
input: torch.Tensor | None,
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
start_position_coefficients: int = 0,
|
|
) -> tuple[torch.Tensor, torch.Tensor, float, torch.Tensor, torch.Tensor]:
|
|
assert input is not None
|
|
|
|
id: int = 0
|
|
(
|
|
input_whiten_mean,
|
|
input_whiten_k,
|
|
input_eigenvalues,
|
|
) = self._svd(
|
|
input,
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
assert input_whiten_mean is not None
|
|
assert input_whiten_k is not None
|
|
assert input_eigenvalues is not None
|
|
|
|
eigenvalue = float(input_eigenvalues[id])
|
|
whiten_mean = input_whiten_mean
|
|
whiten_k = input_whiten_k[:, :, 0]
|
|
|
|
data = (input - input_whiten_mean.unsqueeze(0)) * input_whiten_k[
|
|
:, :, id
|
|
].unsqueeze(0)
|
|
|
|
input_svd = data.sum(dim=-1).sum(dim=-1).unsqueeze(-1).unsqueeze(-1)
|
|
factor = (data * input_svd).sum(dim=0, keepdim=True) / (input_svd**2).sum(
|
|
dim=0, keepdim=True
|
|
)
|
|
to_remove = input_svd * factor
|
|
to_remove /= input_whiten_k[:, :, id].unsqueeze(0) + 1e-20
|
|
to_remove += input_whiten_mean.unsqueeze(0)
|
|
|
|
output = input - to_remove
|
|
|
|
return output, to_remove, eigenvalue, whiten_mean, whiten_k
|
|
|
|
@torch.no_grad()
|
|
def acceptor_svd_remove( # start_position_coefficients: OK
|
|
self,
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
start_position_coefficients: int = 0,
|
|
) -> tuple[torch.Tensor, float, torch.Tensor, torch.Tensor]:
|
|
self.acceptor, to_remove, eigenvalue, whiten_mean, whiten_k = self._to_remove(
|
|
input=self.acceptor,
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
return to_remove, eigenvalue, whiten_mean, whiten_k
|
|
|
|
@torch.no_grad()
|
|
def donor_svd_remove( # start_position_coefficients: OK
|
|
self,
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
start_position_coefficients: int = 0,
|
|
) -> tuple[torch.Tensor, float, torch.Tensor, torch.Tensor]:
|
|
self.donor, to_remove, eigenvalue, whiten_mean, whiten_k = self._to_remove(
|
|
input=self.donor,
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
return to_remove, eigenvalue, whiten_mean, whiten_k
|
|
|
|
@torch.no_grad()
|
|
def volume_svd_remove( # start_position_coefficients: OK
|
|
self,
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
start_position_coefficients: int = 0,
|
|
) -> tuple[torch.Tensor, float, torch.Tensor, torch.Tensor]:
|
|
self.volume, to_remove, eigenvalue, whiten_mean, whiten_k = self._to_remove(
|
|
input=self.volume,
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
return to_remove, eigenvalue, whiten_mean, whiten_k
|
|
|
|
@torch.no_grad()
|
|
def oxygenation_svd_remove( # start_position_coefficients: OK
|
|
self,
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
start_position_coefficients: int = 0,
|
|
) -> tuple[torch.Tensor, float, torch.Tensor, torch.Tensor]:
|
|
(
|
|
self.oxygenation,
|
|
to_remove,
|
|
eigenvalue,
|
|
whiten_mean,
|
|
whiten_k,
|
|
) = self._to_remove(
|
|
input=self.oxygenation,
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
return to_remove, eigenvalue, whiten_mean, whiten_k
|
|
|
|
@torch.no_grad()
|
|
def remove_heartbeat( # start_position_coefficients: OK
|
|
self,
|
|
iterations: int = 2,
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
enable_secondary_data: bool = True,
|
|
start_position_coefficients: int = 0,
|
|
):
|
|
self.acceptor_residuum = None
|
|
self.donor_residuum = None
|
|
self.oxygenation_residuum = None
|
|
self.volume_residuum = None
|
|
|
|
for _ in range(0, iterations):
|
|
to_remove, _, _, _ = self.acceptor_svd_remove(
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
if self.acceptor_residuum is None:
|
|
self.acceptor_residuum = to_remove
|
|
else:
|
|
self.acceptor_residuum += to_remove
|
|
|
|
to_remove, _, _, _ = self.donor_svd_remove(
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
if self.donor_residuum is None:
|
|
self.donor_residuum = to_remove
|
|
else:
|
|
self.donor_residuum += to_remove
|
|
|
|
if enable_secondary_data:
|
|
to_remove, _, _, _ = self.volume_svd_remove(
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
if self.volume_residuum is None:
|
|
self.volume_residuum = to_remove
|
|
else:
|
|
self.volume_residuum += to_remove
|
|
|
|
to_remove, _, _, _ = self.oxygenation_svd_remove(
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
if self.oxygenation_residuum is None:
|
|
self.oxygenation_residuum = to_remove
|
|
else:
|
|
self.oxygenation_residuum += to_remove
|
|
|
|
@torch.no_grad()
|
|
def remove_mean_data(self, enable_secondary_data: bool = True) -> None:
|
|
assert self.donor is not None
|
|
assert self.acceptor is not None
|
|
self.donor -= self.donor.mean(dim=0, keepdim=True)
|
|
self.acceptor -= self.acceptor.mean(dim=0, keepdim=True)
|
|
|
|
if enable_secondary_data:
|
|
assert self.volume is not None
|
|
assert self.oxygenation is not None
|
|
self.volume -= self.volume.mean(dim=0, keepdim=True)
|
|
self.oxygenation -= self.oxygenation.mean(dim=0, keepdim=True)
|
|
|
|
@torch.no_grad()
|
|
def remove_mean_residuum(self, enable_secondary_data: bool = True) -> None:
|
|
assert self.donor_residuum is not None
|
|
assert self.acceptor_residuum is not None
|
|
self.donor_residuum -= self.donor_residuum.mean(dim=0, keepdim=True)
|
|
self.acceptor_residuum -= self.acceptor_residuum.mean(dim=0, keepdim=True)
|
|
|
|
if enable_secondary_data:
|
|
assert self.volume_residuum is not None
|
|
assert self.oxygenation_residuum is not None
|
|
self.volume_residuum -= self.volume_residuum.mean(dim=0, keepdim=True)
|
|
self.oxygenation_residuum -= self.oxygenation_residuum.mean(
|
|
dim=0, keepdim=True
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def _calculate_linear_trend_data(self, input: torch.Tensor) -> torch.Tensor:
|
|
assert input.ndim == 3
|
|
time_beam: torch.Tensor = torch.arange(
|
|
0, input.shape[0], dtype=torch.float32, device=self.device
|
|
)
|
|
time_beam -= time_beam.mean()
|
|
input_mean = input.mean(dim=0, keepdim=True)
|
|
factor = (time_beam.unsqueeze(-1).unsqueeze(-1) * (input - input_mean)).sum(
|
|
dim=0, keepdim=True
|
|
) / (time_beam**2).sum(dim=0, keepdim=True).unsqueeze(-1).unsqueeze(-1)
|
|
|
|
output = factor * time_beam.unsqueeze(-1).unsqueeze(-1) + input_mean
|
|
|
|
return output
|
|
|
|
@torch.no_grad()
|
|
def remove_linear_trend_data(self, enable_secondary_data: bool = True) -> None:
|
|
assert self.donor is not None
|
|
assert self.acceptor is not None
|
|
self.donor -= self._calculate_linear_trend_data(self.donor)
|
|
self.acceptor -= self._calculate_linear_trend_data(self.acceptor)
|
|
|
|
if enable_secondary_data:
|
|
assert self.volume is not None
|
|
assert self.oxygenation is not None
|
|
self.volume -= self._calculate_linear_trend_data(self.volume)
|
|
self.oxygenation -= self._calculate_linear_trend_data(self.oxygenation)
|
|
|
|
@torch.no_grad()
|
|
def remove_linear_trend_residuum(
|
|
self,
|
|
enable_secondary_data: bool = True,
|
|
) -> None:
|
|
assert self.donor_residuum is not None
|
|
assert self.acceptor_residuum is not None
|
|
|
|
self.donor_residuum -= self._calculate_linear_trend_data(self.donor_residuum)
|
|
self.acceptor_residuum -= self._calculate_linear_trend_data(
|
|
self.acceptor_residuum
|
|
)
|
|
|
|
if enable_secondary_data:
|
|
assert self.volume_residuum is not None
|
|
assert self.oxygenation_residuum is not None
|
|
self.volume_residuum -= self._calculate_linear_trend_data(
|
|
self.volume_residuum
|
|
)
|
|
self.oxygenation_residuum -= self._calculate_linear_trend_data(
|
|
self.oxygenation_residuum
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def frame_shift(
|
|
self,
|
|
enable_secondary_data: bool = True,
|
|
):
|
|
assert self.donor is not None
|
|
assert self.acceptor is not None
|
|
self.donor = self.donor[1:, :, :]
|
|
self.acceptor = self.acceptor[1:, :, :]
|
|
|
|
if enable_secondary_data:
|
|
assert self.volume is not None
|
|
assert self.oxygenation is not None
|
|
self.volume = (self.volume[1:, :, :] + self.volume[:-1, :, :]) / 2.0
|
|
self.oxygenation = (
|
|
self.oxygenation[1:, :, :] + self.oxygenation[:-1, :, :]
|
|
) / 2.0
|
|
|
|
if self.donor_residuum is not None:
|
|
self.donor_residuum = self.donor_residuum[1:, :, :]
|
|
|
|
if self.acceptor_residuum is not None:
|
|
self.acceptor_residuum = self.acceptor_residuum[1:, :, :]
|
|
|
|
if enable_secondary_data:
|
|
if self.volume_residuum is not None:
|
|
self.volume_residuum = (
|
|
self.volume_residuum[1:, :, :] + self.volume_residuum[:-1, :, :]
|
|
) / 2.0
|
|
|
|
if self.oxygenation_residuum is not None:
|
|
self.oxygenation_residuum = (
|
|
self.oxygenation_residuum[1:, :, :]
|
|
+ self.oxygenation_residuum[:-1, :, :]
|
|
) / 2.0
|
|
|
|
@torch.no_grad()
|
|
def cleaned_load_data(
|
|
self,
|
|
experiment_id: int,
|
|
trial_id: int,
|
|
align: bool = True,
|
|
iterations: int = 1,
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
remove_heartbeat: bool = True,
|
|
remove_mean: bool = True,
|
|
remove_linear: bool = True,
|
|
remove_heartbeat_mean: bool = False,
|
|
remove_heartbeat_linear: bool = False,
|
|
bin_size: int = 4,
|
|
do_frame_shift: bool = True,
|
|
enable_secondary_data: bool = True,
|
|
mmap_mode: bool = True,
|
|
initital_mask: torch.Tensor | None = None,
|
|
start_position_coefficients: int = 0,
|
|
) -> None:
|
|
self.logger.info(f"{self.level2} start load_data")
|
|
self.load_data(
|
|
experiment_id=experiment_id,
|
|
trial_id=trial_id,
|
|
align=align,
|
|
enable_secondary_data=enable_secondary_data,
|
|
mmap_mode=mmap_mode,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
assert self.donor is not None
|
|
assert self.acceptor is not None
|
|
|
|
if bin_size > 1:
|
|
self.logger.info(f"{self.level2} spatial pooling")
|
|
pool = torch.nn.AvgPool2d((bin_size, bin_size), stride=(bin_size, bin_size))
|
|
self.donor = pool(self.donor)
|
|
self.acceptor = pool(self.acceptor)
|
|
if enable_secondary_data:
|
|
assert self.volume is not None
|
|
assert self.oxygenation is not None
|
|
self.volume = pool(self.volume)
|
|
self.oxygenation = pool(self.oxygenation)
|
|
|
|
if self.donor is not None:
|
|
self.donor_scale = self.donor.mean(dim=0, keepdim=True)
|
|
self.donor /= self.donor_scale
|
|
self.donor -= 1.0
|
|
|
|
if self.acceptor is not None:
|
|
self.acceptor_scale = self.acceptor.mean(dim=0, keepdim=True)
|
|
self.acceptor /= self.acceptor_scale
|
|
self.acceptor -= 1.0
|
|
|
|
if self.volume is not None:
|
|
self.volume_scale = self.volume.mean(dim=0, keepdim=True)
|
|
self.volume /= self.volume_scale
|
|
self.volume -= 1.0
|
|
|
|
if self.oxygenation is not None:
|
|
self.oxygenation_scale = self.oxygenation.mean(dim=0, keepdim=True)
|
|
self.oxygenation /= self.oxygenation_scale
|
|
self.oxygenation -= 1.0
|
|
|
|
if initital_mask is not None:
|
|
self.logger.info(f"{self.level2} initial mask is applied on the data")
|
|
assert self.acceptor is not None
|
|
assert self.donor is not None
|
|
assert initital_mask.ndim == 2
|
|
assert initital_mask.shape[0] == self.donor.shape[1]
|
|
assert initital_mask.shape[1] == self.donor.shape[2]
|
|
|
|
self.acceptor *= initital_mask.unsqueeze(0)
|
|
self.donor *= initital_mask.unsqueeze(0)
|
|
|
|
if enable_secondary_data:
|
|
assert self.oxygenation is not None
|
|
assert self.volume is not None
|
|
self.oxygenation *= initital_mask.unsqueeze(0)
|
|
self.volume *= initital_mask.unsqueeze(0)
|
|
|
|
if remove_heartbeat:
|
|
self.logger.info(f"{self.level2} remove the heart beat via SVD")
|
|
self.remove_heartbeat(
|
|
iterations=iterations,
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
enable_secondary_data=enable_secondary_data,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
if remove_mean:
|
|
self.logger.info(f"{self.level2} remove mean")
|
|
self.remove_mean_data(enable_secondary_data=enable_secondary_data)
|
|
|
|
if remove_linear:
|
|
self.logger.info(f"{self.level2} remove linear trends")
|
|
self.remove_linear_trend_data(enable_secondary_data=enable_secondary_data)
|
|
|
|
if remove_heartbeat:
|
|
if remove_heartbeat_mean:
|
|
self.logger.info(f"{self.level2} remove mean (heart beat signal)")
|
|
self.remove_mean_residuum(enable_secondary_data=enable_secondary_data)
|
|
if remove_heartbeat_linear:
|
|
self.logger.info(
|
|
f"{self.level2} remove linear trends (heart beat signal)"
|
|
)
|
|
self.remove_linear_trend_residuum(
|
|
enable_secondary_data=enable_secondary_data
|
|
)
|
|
|
|
if do_frame_shift:
|
|
self.logger.info(f"{self.level2} frame shift")
|
|
self.frame_shift(enable_secondary_data=enable_secondary_data)
|
|
|
|
@torch.no_grad()
|
|
def remove_other_signals( # start_position_coefficients: OK
|
|
self,
|
|
start_position_coefficients: int = 0,
|
|
match_iterations: int = 25,
|
|
export_parameters: bool = True,
|
|
) -> tuple[
|
|
torch.Tensor,
|
|
torch.Tensor,
|
|
float,
|
|
float,
|
|
float,
|
|
float,
|
|
torch.Tensor | None,
|
|
torch.Tensor | None,
|
|
]:
|
|
assert self.acceptor is not None
|
|
assert self.donor is not None
|
|
assert self.oxygenation is not None
|
|
assert self.volume is not None
|
|
|
|
index_full_dataset = torch.arange(
|
|
0, self.acceptor.shape[1], device=self.device, dtype=torch.int64
|
|
)
|
|
|
|
result_a: torch.Tensor = torch.zeros_like(self.acceptor)
|
|
result_d: torch.Tensor = torch.zeros_like(self.donor)
|
|
|
|
max_scale_value_a = 0.0
|
|
initial_scale_value_a = 0.0
|
|
max_scale_value_d = 0.0
|
|
initial_scale_value_d = 0.0
|
|
|
|
parameter_a: torch.Tensor | None = None
|
|
parameter_d: torch.Tensor | None = None
|
|
|
|
for chunk in self._chunk_iterator(index_full_dataset, self.filtfilt_chuck_size):
|
|
a: torch.Tensor = self.acceptor[:, chunk, :].detach().clone()
|
|
d: torch.Tensor = self.donor[:, chunk, :].detach().clone()
|
|
|
|
o: torch.Tensor = self.oxygenation[:, chunk, :].detach().clone()
|
|
v: torch.Tensor = self.volume[:, chunk, :].detach().clone()
|
|
|
|
a_mean = a[start_position_coefficients:, ...].mean(dim=0, keepdim=True)
|
|
a_mean_full = a.mean(dim=0, keepdim=True)
|
|
a -= a_mean_full
|
|
a_correction = a_mean - a_mean_full
|
|
|
|
d_mean = d[start_position_coefficients:, ...].mean(dim=0, keepdim=True)
|
|
d_mean_full = d.mean(dim=0, keepdim=True)
|
|
d -= d_mean_full
|
|
d_correction = d_mean - d_mean_full
|
|
|
|
o_mean = o[start_position_coefficients:, ...].mean(dim=0, keepdim=True)
|
|
o_mean_full = o.mean(dim=0, keepdim=True)
|
|
o -= o_mean
|
|
o_correction = o_mean - o_mean_full
|
|
o_norm = 1.0 / (
|
|
(o[start_position_coefficients:, ...] ** 2).sum(dim=0) + 1e-20
|
|
)
|
|
|
|
v_mean = v[start_position_coefficients:, ...].mean(dim=0, keepdim=True)
|
|
v_mean_full = v.mean(dim=0, keepdim=True)
|
|
v -= v_mean
|
|
v_correction = v_mean - v_mean_full
|
|
v_norm = 1.0 / (
|
|
(v[start_position_coefficients:, ...] ** 2).sum(dim=0) + 1e-20
|
|
)
|
|
|
|
linear: torch.Tensor = (
|
|
torch.arange(0, o.shape[0], device=self.device, dtype=torch.float32)
|
|
.unsqueeze(-1)
|
|
.unsqueeze(-1)
|
|
)
|
|
l_mean = linear[start_position_coefficients:, ...].mean(dim=0, keepdim=True)
|
|
l_mean_full = linear.mean(dim=0, keepdim=True)
|
|
linear -= l_mean
|
|
l_correction = l_mean - l_mean_full
|
|
linear_norm = 1.0 / (
|
|
(linear[start_position_coefficients:, ...] ** 2).sum(dim=0) + 1e-20
|
|
)
|
|
linear = torch.tile(linear, (1, o.shape[1], o.shape[2]))
|
|
linear_norm = torch.tile(linear_norm, (o.shape[1], o.shape[2]))
|
|
l_correction = torch.tile(l_correction, (1, o.shape[1], o.shape[2]))
|
|
|
|
data = torch.cat(
|
|
(linear.unsqueeze(-1), o.unsqueeze(-1), v.unsqueeze(-1)), dim=-1
|
|
)
|
|
del linear
|
|
del o
|
|
del v
|
|
|
|
data_mean_correction = torch.cat(
|
|
(
|
|
l_correction.unsqueeze(-1),
|
|
o_correction.unsqueeze(-1),
|
|
v_correction.unsqueeze(-1),
|
|
),
|
|
dim=-1,
|
|
)
|
|
|
|
data_norm = torch.cat(
|
|
(linear_norm.unsqueeze(-1), o_norm.unsqueeze(-1), v_norm.unsqueeze(-1)),
|
|
dim=-1,
|
|
)
|
|
del linear_norm
|
|
del o_norm
|
|
del v_norm
|
|
|
|
if export_parameters:
|
|
parameter_a_temp: torch.Tensor | None = torch.zeros_like(data_norm)
|
|
parameter_d_temp: torch.Tensor | None = torch.zeros_like(data_norm)
|
|
else:
|
|
parameter_a_temp = None
|
|
parameter_d_temp = None
|
|
|
|
for mode_a in [True, False]:
|
|
if mode_a:
|
|
result = a.detach().clone()
|
|
result_mean_correct = a_correction
|
|
|
|
else:
|
|
result = d.detach().clone()
|
|
result_mean_correct = d_correction
|
|
|
|
for i in range(0, match_iterations):
|
|
scale = (
|
|
(
|
|
data[start_position_coefficients:, ...]
|
|
* (
|
|
result[start_position_coefficients:, ...]
|
|
+ result_mean_correct
|
|
).unsqueeze(-1)
|
|
).sum(dim=0)
|
|
) * data_norm
|
|
|
|
idx = torch.abs(scale).argmax(dim=-1)
|
|
scale = torch.gather(scale, -1, idx.unsqueeze(-1)).squeeze(-1)
|
|
|
|
idx_3d = torch.tile(idx.unsqueeze(0), (data.shape[0], 1, 1))
|
|
data_selected = torch.gather(
|
|
(data - data_mean_correction), -1, idx_3d.unsqueeze(-1)
|
|
).squeeze(-1)
|
|
|
|
result -= data_selected * scale.unsqueeze(0)
|
|
|
|
if mode_a:
|
|
if i == 0:
|
|
initial_scale_value_a = max(
|
|
[max_scale_value_a, float(scale.max())]
|
|
)
|
|
if parameter_a_temp is not None:
|
|
parameter_a_temp.scatter_add_(
|
|
-1, idx.unsqueeze(-1), scale.unsqueeze(-1)
|
|
)
|
|
|
|
else:
|
|
if i == 0:
|
|
initial_scale_value_d = max(
|
|
[max_scale_value_d, float(scale.max())]
|
|
)
|
|
if parameter_d_temp is not None:
|
|
parameter_d_temp.scatter_add_(
|
|
-1, idx.unsqueeze(-1), scale.unsqueeze(-1)
|
|
)
|
|
|
|
if mode_a:
|
|
result_a[:, chunk, :] = result.detach().clone()
|
|
max_scale_value_a = max([max_scale_value_a, float(scale.max())])
|
|
if parameter_a_temp is not None:
|
|
parameter_a_temp = torch.cat(
|
|
(parameter_a_temp, a_mean_full.squeeze(0).unsqueeze(-1)),
|
|
dim=-1,
|
|
)
|
|
else:
|
|
result_d[:, chunk, :] = result.detach().clone()
|
|
max_scale_value_d = max([max_scale_value_d, float(scale.max())])
|
|
if parameter_d_temp is not None:
|
|
parameter_d_temp = torch.cat(
|
|
(parameter_d_temp, d_mean_full.squeeze(0).unsqueeze(-1)),
|
|
dim=-1,
|
|
)
|
|
if export_parameters:
|
|
if (parameter_a is None) and (parameter_a_temp is not None):
|
|
parameter_a = torch.zeros(
|
|
(
|
|
self.acceptor.shape[1],
|
|
parameter_a_temp.shape[1],
|
|
parameter_a_temp.shape[2],
|
|
),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
if (parameter_a is not None) and (parameter_a_temp is not None):
|
|
parameter_a[chunk, ...] = parameter_a_temp
|
|
|
|
if (parameter_d is None) and (parameter_d_temp is not None):
|
|
parameter_d = torch.zeros(
|
|
(
|
|
self.acceptor.shape[1],
|
|
parameter_d_temp.shape[1],
|
|
parameter_d_temp.shape[2],
|
|
),
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
if (parameter_d is not None) and (parameter_d_temp is not None):
|
|
parameter_d[chunk, ...] = parameter_d_temp
|
|
|
|
self.logger.info(
|
|
f"{self.level3} acceptor -- Progression scale: {initial_scale_value_a} -> {max_scale_value_a}"
|
|
)
|
|
self.logger.info(
|
|
f"{self.level3} donor -- Progression scale: {initial_scale_value_d} -> {max_scale_value_d}"
|
|
)
|
|
return (
|
|
result_a,
|
|
result_d,
|
|
max_scale_value_a,
|
|
initial_scale_value_a,
|
|
max_scale_value_d,
|
|
initial_scale_value_d,
|
|
parameter_a,
|
|
parameter_d,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def _filtfilt(
|
|
self,
|
|
input: torch.Tensor,
|
|
butter_a: torch.Tensor,
|
|
butter_b: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
assert butter_a.ndim == 1
|
|
assert butter_b.ndim == 1
|
|
assert butter_a.shape[0] == butter_b.shape[0]
|
|
|
|
process_data: torch.Tensor = input.movedim(0, -1).detach().clone()
|
|
|
|
padding_length = 12 * int(butter_a.shape[0])
|
|
left_padding = 2 * process_data[..., 0].unsqueeze(-1) - process_data[
|
|
..., 1 : padding_length + 1
|
|
].flip(-1)
|
|
right_padding = 2 * process_data[..., -1].unsqueeze(-1) - process_data[
|
|
..., -(padding_length + 1) : -1
|
|
].flip(-1)
|
|
process_data_padded = torch.cat(
|
|
(left_padding, process_data, right_padding), dim=-1
|
|
)
|
|
|
|
output = ta.functional.filtfilt(
|
|
process_data_padded.unsqueeze(0), butter_a, butter_b, clamp=False
|
|
).squeeze(0)
|
|
output = output[..., padding_length:-padding_length].movedim(-1, 0)
|
|
return output
|
|
|
|
@torch.no_grad()
|
|
def _butter_bandpass(
|
|
self, low_frequency: float = 5, high_frequency: float = 15, fs: float = 100.0
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
import scipy
|
|
|
|
butter_b_np, butter_a_np = scipy.signal.butter(
|
|
4, [low_frequency, high_frequency], btype="bandpass", output="ba", fs=fs
|
|
)
|
|
butter_a = torch.tensor(butter_a_np, device=self.device, dtype=torch.float32)
|
|
butter_b = torch.tensor(butter_b_np, device=self.device, dtype=torch.float32)
|
|
return butter_a, butter_b
|
|
|
|
@torch.no_grad()
|
|
def _chunk_iterator(self, array: torch.Tensor, chunk_size: int):
|
|
for i in range(0, array.shape[0], chunk_size):
|
|
yield array[i : i + chunk_size]
|
|
|
|
@torch.no_grad()
|
|
def heartbeat_scale( # start_position_coefficients: OK
|
|
self,
|
|
low_frequency: float = 5,
|
|
high_frequency: float = 15,
|
|
fs: float = 100.0,
|
|
apply_to_data: bool = False,
|
|
threshold: float | None = 0.5,
|
|
start_position_coefficients: int = 0,
|
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor | None]:
|
|
assert self.donor_residuum is not None
|
|
assert self.acceptor_residuum is not None
|
|
|
|
butter_a, butter_b = self._butter_bandpass(
|
|
low_frequency=low_frequency, high_frequency=high_frequency, fs=fs
|
|
)
|
|
|
|
butter_a, butter_b = self._butter_bandpass(
|
|
low_frequency=low_frequency, high_frequency=high_frequency, fs=100.0
|
|
)
|
|
self.logger.info(f"{self.level3} apply bandpass donor_residuum (filtfilt)")
|
|
|
|
index_full_dataset: torch.Tensor = torch.arange(
|
|
0, self.donor_residuum.shape[1], device=self.device, dtype=torch.int64
|
|
)
|
|
|
|
hb_d = torch.zeros_like(self.donor_residuum[start_position_coefficients:, ...])
|
|
for chunk in self._chunk_iterator(index_full_dataset, self.filtfilt_chuck_size):
|
|
temp_filtfilt = self._filtfilt(
|
|
self.donor_residuum[start_position_coefficients:, chunk, :],
|
|
butter_a=butter_a,
|
|
butter_b=butter_b,
|
|
)
|
|
hb_d[:, chunk, :] = temp_filtfilt
|
|
|
|
hb_d = hb_d[start_position:, ...]
|
|
hb_d -= hb_d.mean(dim=0, keepdim=True)
|
|
|
|
self.logger.info(f"{self.level3} apply bandpass acceptor_residuum (filtfilt)")
|
|
|
|
index_full_dataset = torch.arange(
|
|
0, self.acceptor_residuum.shape[1], device=self.device, dtype=torch.int64
|
|
)
|
|
hb_a = torch.zeros_like(self.donor_residuum[start_position_coefficients:, ...])
|
|
for chunk in self._chunk_iterator(index_full_dataset, self.filtfilt_chuck_size):
|
|
temp_filtfilt = self._filtfilt(
|
|
self.acceptor_residuum[start_position_coefficients:, chunk, :],
|
|
butter_a=butter_a,
|
|
butter_b=butter_b,
|
|
)
|
|
hb_a[:, chunk, :] = temp_filtfilt
|
|
|
|
hb_a = hb_a[start_position:, ...]
|
|
hb_a -= hb_a.mean(dim=0, keepdim=True)
|
|
|
|
scale = (hb_a * hb_d).sum(dim=0) / (hb_a**2).sum(dim=0)
|
|
|
|
heartbeat_a = torch.sqrt(scale)
|
|
heartbeat_d = 1.0 / (heartbeat_a + 1e-20)
|
|
|
|
if apply_to_data:
|
|
if self.donor is not None:
|
|
self.donor *= heartbeat_d.unsqueeze(0)
|
|
if self.volume is not None:
|
|
self.volume *= heartbeat_d.unsqueeze(0)
|
|
if self.acceptor is not None:
|
|
self.acceptor *= heartbeat_a.unsqueeze(0)
|
|
if self.oxygenation is not None:
|
|
self.oxygenation *= heartbeat_a.unsqueeze(0)
|
|
|
|
if threshold is not None:
|
|
self.logger.info(f"{self.level3} calculate mask")
|
|
assert self.donor_scale is not None
|
|
assert self.acceptor_scale is not None
|
|
temp_d = hb_d.std(dim=0) * self.donor_scale.squeeze(0)
|
|
temp_d -= temp_d.min()
|
|
temp_d /= temp_d.max()
|
|
|
|
temp_a = hb_a.std(dim=0) * self.acceptor_scale.squeeze(0)
|
|
temp_a -= temp_a.min()
|
|
temp_a /= temp_a.max()
|
|
|
|
mask = torch.where(temp_d > threshold, 1.0, 0.0) * torch.where(
|
|
temp_a > threshold, 1.0, 0.0
|
|
)
|
|
else:
|
|
mask = None
|
|
|
|
return heartbeat_a, heartbeat_d, mask
|
|
|
|
@torch.no_grad()
|
|
def measure_heartbeat_frequency( # start_position_coefficients: OK
|
|
self,
|
|
low_frequency: float = 5,
|
|
high_frequency: float = 15,
|
|
fs: float = 100.0,
|
|
use_input_source: str = "volume",
|
|
start_position_coefficients: int = 0,
|
|
half_width_frequency_window: float = 3.0, # Hz (on side )
|
|
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
if use_input_source == "donor":
|
|
assert self.donor is not None
|
|
hb: torch.Tensor = self.donor[start_position_coefficients:, ...]
|
|
|
|
elif use_input_source == "acceptor":
|
|
assert self.acceptor is not None
|
|
hb = self.acceptor[start_position_coefficients:, ...]
|
|
|
|
elif use_input_source == "volume":
|
|
assert self.volume is not None
|
|
hb = self.volume[start_position_coefficients:, ...]
|
|
|
|
else:
|
|
assert self.oxygenation is not None
|
|
hb = self.oxygenation[start_position_coefficients:, ...]
|
|
|
|
frequency_axis: torch.Tensor = (
|
|
torch.fft.rfftfreq(hb.shape[0]).to(device=self.device) * fs
|
|
)
|
|
|
|
delta_idx = int(
|
|
math.ceil(
|
|
half_width_frequency_window
|
|
/ (float(frequency_axis[1]) - float(frequency_axis[0]))
|
|
)
|
|
)
|
|
|
|
idx: torch.Tensor = torch.where(
|
|
(frequency_axis >= low_frequency) * (frequency_axis <= high_frequency)
|
|
)[0]
|
|
|
|
power_hb: torch.Tensor = torch.abs(torch.fft.rfft(hb, dim=0)) ** 2
|
|
power_hb = power_hb[idx, :, :].argmax(dim=0) + idx[0]
|
|
power_hb_low = power_hb - delta_idx
|
|
power_hb_low = power_hb_low.clamp(min=0)
|
|
power_hb_high = power_hb + delta_idx
|
|
power_hb_high = power_hb_high.clamp(max=frequency_axis.shape[0])
|
|
|
|
return power_hb_low, power_hb_high, frequency_axis
|
|
|
|
@torch.no_grad()
|
|
def measure_heartbeat_power( # start_position_coefficients: OK
|
|
self,
|
|
use_input_source: str = "donor",
|
|
start_position_coefficients: int = 0,
|
|
power_hb_low: torch.Tensor | None = None,
|
|
power_hb_high: torch.Tensor | None = None,
|
|
custom_input: torch.Tensor | None = None,
|
|
) -> torch.Tensor:
|
|
if use_input_source == "donor":
|
|
assert self.donor is not None
|
|
hb: torch.Tensor = self.donor[start_position_coefficients:, ...]
|
|
|
|
elif use_input_source == "acceptor":
|
|
assert self.acceptor is not None
|
|
hb = self.acceptor[start_position_coefficients:, ...]
|
|
|
|
elif use_input_source == "volume":
|
|
assert self.volume is not None
|
|
hb = self.volume[start_position_coefficients:, ...]
|
|
|
|
elif use_input_source == "custom":
|
|
assert custom_input is not None
|
|
hb = custom_input[start_position_coefficients:, ...]
|
|
else:
|
|
assert self.oxygenation is not None
|
|
hb = self.oxygenation[start_position_coefficients:, ...]
|
|
|
|
counter: torch.Tensor = torch.zeros(
|
|
(hb.shape[1], hb.shape[2]),
|
|
dtype=hb.dtype,
|
|
device=self.device,
|
|
)
|
|
|
|
index_full_dataset = torch.arange(
|
|
0, hb.shape[1], device=self.device, dtype=torch.int64
|
|
)
|
|
|
|
power_hb: torch.Tensor | None = None
|
|
for chunk in self._chunk_iterator(index_full_dataset, self.filtfilt_chuck_size):
|
|
temp_power = torch.abs(torch.fft.rfft(hb[:, chunk, :], dim=0)) ** 2
|
|
if power_hb is None:
|
|
power_hb = torch.zeros(
|
|
(temp_power.shape[0], hb.shape[1], temp_power.shape[2]),
|
|
dtype=temp_power.dtype,
|
|
device=temp_power.device,
|
|
)
|
|
assert power_hb is not None
|
|
power_hb[:, chunk, :] = temp_power
|
|
|
|
assert power_hb is not None
|
|
for pos in range(0, power_hb.shape[0]):
|
|
pos_torch = torch.tensor(pos, dtype=torch.int64, device=self.device)
|
|
slice_temp = (
|
|
(pos_torch >= power_hb_low) * (pos_torch < power_hb_high)
|
|
).type(dtype=power_hb.dtype)
|
|
power_hb[pos, ...] *= slice_temp
|
|
counter += slice_temp
|
|
power_hb = power_hb.sum(dim=0) / counter
|
|
|
|
return power_hb
|
|
|
|
@torch.no_grad()
|
|
def automatic_load( # start_position_coefficients: OK
|
|
self,
|
|
experiment_id: int = 1,
|
|
trial_id: int = 1,
|
|
start_position: int = 0,
|
|
start_position_coefficients: int = 100,
|
|
fs: float = 100.0,
|
|
use_regression: bool | None = None,
|
|
# Heartbeat
|
|
remove_heartbeat: bool = True, # i.e. use SVD
|
|
low_frequency: float = 5, # Hz Butter Bandpass Heartbeat
|
|
high_frequency: float = 15, # Hz Butter Bandpass Heartbeat
|
|
threshold: float | None = 0.5, # For the mask
|
|
# Extra exposed parameters:
|
|
align: bool = True,
|
|
iterations: int = 1, # SVD iterations: Do not touch! Keep at 1
|
|
lowrank_method: bool = True,
|
|
lowrank_q: int = 6,
|
|
remove_heartbeat_mean: bool = False,
|
|
remove_heartbeat_linear: bool = False,
|
|
bin_size: int = 4,
|
|
do_frame_shift: bool | None = None,
|
|
half_width_frequency_window: float = 3.0, # Hz (on side ) measure_heartbeat_frequency
|
|
mmap_mode: bool = True,
|
|
initital_mask_name: str | None = None,
|
|
initital_mask_update: bool = True,
|
|
initital_mask_roi: bool = False,
|
|
gaussian_blur_kernel_size: int | None = 3,
|
|
gaussian_blur_sigma: float = 1.0,
|
|
bin_size_post: int | None = None,
|
|
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
|
self.logger.info(f"{self.level0} start automatic_load")
|
|
|
|
if use_regression is None:
|
|
use_regression = not remove_heartbeat
|
|
|
|
if do_frame_shift is None:
|
|
do_frame_shift = not remove_heartbeat
|
|
|
|
initital_mask: torch.Tensor | None = None
|
|
|
|
if (initital_mask_name is not None) and os.path.isfile(initital_mask_name):
|
|
initital_mask = torch.tensor(
|
|
np.load(initital_mask_name), device=self.device, dtype=torch.float32
|
|
)
|
|
self.logger.info(f"{self.level1} try to load previous mask: found")
|
|
else:
|
|
self.logger.info(f"{self.level1} try to load previous mask: NOT found")
|
|
|
|
self.logger.info(f"{self.level1} start cleaned_load_data")
|
|
self.cleaned_load_data(
|
|
experiment_id=experiment_id,
|
|
trial_id=trial_id,
|
|
remove_heartbeat=remove_heartbeat,
|
|
remove_mean=not use_regression,
|
|
remove_linear=not use_regression,
|
|
enable_secondary_data=use_regression,
|
|
align=align,
|
|
iterations=iterations,
|
|
lowrank_method=lowrank_method,
|
|
lowrank_q=lowrank_q,
|
|
remove_heartbeat_mean=remove_heartbeat_mean,
|
|
remove_heartbeat_linear=remove_heartbeat_linear,
|
|
bin_size=bin_size,
|
|
do_frame_shift=do_frame_shift,
|
|
mmap_mode=mmap_mode,
|
|
initital_mask=initital_mask,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
|
|
heartbeat_a: torch.Tensor | None = None
|
|
heartbeat_d: torch.Tensor | None = None
|
|
mask: torch.Tensor | None = None
|
|
power_hb_low: torch.Tensor | None = None
|
|
power_hb_high: torch.Tensor | None = None
|
|
|
|
if remove_heartbeat:
|
|
self.logger.info(f"{self.level1} remove heart beat (heartbeat_scale)")
|
|
heartbeat_a, heartbeat_d, mask = self.heartbeat_scale(
|
|
low_frequency=low_frequency,
|
|
high_frequency=high_frequency,
|
|
fs=fs,
|
|
apply_to_data=False,
|
|
threshold=threshold,
|
|
start_position_coefficients=start_position_coefficients,
|
|
)
|
|
else:
|
|
self.logger.info(
|
|
f"{self.level1} measure heart rate (measure_heartbeat_frequency)"
|
|
)
|
|
assert self.volume is not None
|
|
(
|
|
power_hb_low,
|
|
power_hb_high,
|
|
_,
|
|
) = self.measure_heartbeat_frequency(
|
|
low_frequency=low_frequency,
|
|
high_frequency=high_frequency,
|
|
fs=fs,
|
|
use_input_source="volume",
|
|
start_position_coefficients=start_position_coefficients,
|
|
half_width_frequency_window=half_width_frequency_window,
|
|
)
|
|
|
|
if use_regression:
|
|
self.logger.info(f"{self.level1} use regression")
|
|
(
|
|
result_a,
|
|
result_d,
|
|
_,
|
|
_,
|
|
_,
|
|
_,
|
|
_,
|
|
_,
|
|
) = self.remove_other_signals(
|
|
start_position_coefficients=start_position_coefficients,
|
|
match_iterations=25,
|
|
export_parameters=False,
|
|
)
|
|
result_a = result_a[start_position:, ...]
|
|
result_d = result_d[start_position:, ...]
|
|
else:
|
|
self.logger.info(f"{self.level1} don't use regression")
|
|
assert self.acceptor is not None
|
|
assert self.donor is not None
|
|
result_a = self.acceptor[start_position:, ...].clone()
|
|
result_d = self.donor[start_position:, ...].clone()
|
|
|
|
if mask is not None:
|
|
result_a *= mask.unsqueeze(0)
|
|
result_d *= mask.unsqueeze(0)
|
|
|
|
if remove_heartbeat is False:
|
|
self.logger.info(
|
|
f"{self.level1} donor: measure heart beat spectral power (measure_heartbeat_power)"
|
|
)
|
|
temp_d = self.measure_heartbeat_power(
|
|
use_input_source="donor",
|
|
start_position_coefficients=start_position_coefficients,
|
|
power_hb_low=power_hb_low,
|
|
power_hb_high=power_hb_high,
|
|
)
|
|
self.logger.info(
|
|
f"{self.level1} acceptor: measure heart beat spectral power (measure_heartbeat_power)"
|
|
)
|
|
temp_a = self.measure_heartbeat_power(
|
|
use_input_source="acceptor",
|
|
start_position_coefficients=start_position_coefficients,
|
|
power_hb_low=power_hb_low,
|
|
power_hb_high=power_hb_high,
|
|
)
|
|
scale = temp_d / (temp_a + 1e-20)
|
|
|
|
heartbeat_a = torch.sqrt(scale)
|
|
heartbeat_d = 1.0 / (heartbeat_a + 1e-20)
|
|
|
|
self.logger.info(f"{self.level1} scale acceptor and donor signals")
|
|
if heartbeat_a is not None:
|
|
result_a *= heartbeat_a.unsqueeze(0)
|
|
if heartbeat_d is not None:
|
|
result_d *= heartbeat_d.unsqueeze(0)
|
|
|
|
if mask is not None:
|
|
if initital_mask_update:
|
|
self.logger.info(f"{self.level1} update inital mask")
|
|
if initital_mask is None:
|
|
initital_mask = mask.clone()
|
|
else:
|
|
initital_mask *= mask
|
|
|
|
if (initital_mask_roi) and (initital_mask is not None):
|
|
self.logger.info(f"{self.level1} enter roi mask drawing modus")
|
|
yes_choices = ["yes", "y"]
|
|
contiue_roi: bool = True
|
|
|
|
image: np.ndarray = (result_a - result_d)[0, ...].cpu().numpy()
|
|
image[initital_mask.cpu().numpy() == 0] = float("NaN")
|
|
|
|
while contiue_roi:
|
|
user_input = input(
|
|
"Mask: Do you want to remove more pixel (yes/no)? "
|
|
)
|
|
|
|
if user_input.lower() in yes_choices:
|
|
plt.imshow(image, cmap="hot")
|
|
plt.title("Select a region for removal")
|
|
|
|
temp_roi = RoiPoly(color="g")
|
|
plt.show()
|
|
|
|
if len(temp_roi.x) > 0:
|
|
new_mask = temp_roi.get_mask(image)
|
|
new_mask_np = new_mask.astype(np.float32)
|
|
new_mask_torch = torch.tensor(
|
|
new_mask_np,
|
|
device=self.device,
|
|
dtype=torch.float32,
|
|
)
|
|
|
|
plt.imshow(image, cmap="hot")
|
|
temp_roi.display_roi()
|
|
plt.title("Selected region for removal")
|
|
print("Please close figure when ready...")
|
|
plt.show()
|
|
user_input = input(
|
|
"Mask: Remove these pixel (yes/no)? "
|
|
)
|
|
|
|
if user_input.lower() in yes_choices:
|
|
initital_mask *= 1.0 - new_mask_torch
|
|
image[new_mask] = float("NaN")
|
|
|
|
else:
|
|
contiue_roi = False
|
|
|
|
if initital_mask_name is not None:
|
|
self.logger.info(f"{self.level1} save mask")
|
|
np.save(initital_mask_name, initital_mask.cpu().numpy())
|
|
|
|
self.logger.info(f"{self.level0} end automatic_load")
|
|
|
|
# result = (1.0 + result_a) / (1.0 + result_d)
|
|
result = 1.0 + result_a - result_d
|
|
|
|
if (gaussian_blur_kernel_size is not None) and (gaussian_blur_kernel_size > 0):
|
|
gaussian_blur = tv.transforms.GaussianBlur(
|
|
kernel_size=[gaussian_blur_kernel_size, gaussian_blur_kernel_size],
|
|
sigma=gaussian_blur_sigma,
|
|
)
|
|
result = gaussian_blur(result)
|
|
|
|
if (bin_size_post is not None) and (bin_size_post > 1):
|
|
pool = torch.nn.AvgPool2d(
|
|
(bin_size_post, bin_size_post), stride=(bin_size_post, bin_size_post)
|
|
)
|
|
result = pool(result)
|
|
|
|
if mask is not None:
|
|
mask = (
|
|
(pool(mask.unsqueeze(0)) > 0).type(dtype=torch.float32).squeeze(0)
|
|
)
|
|
|
|
return result, mask
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from Anime import Anime
|
|
|
|
# path: str = "/data_1/robert/2021-05-05/M3852M/raw"
|
|
path: str = "/data_1/robert/2021-05-21/M3852M/raw"
|
|
initital_mask_name: str | None = None
|
|
initital_mask_update: bool = True
|
|
initital_mask_roi: bool = False # default: True
|
|
|
|
experiment_id: int = 2
|
|
trial_id: int = 180
|
|
start_position: int = 0
|
|
start_position_coefficients: int = 100
|
|
remove_heartbeat: bool = True # i.e. use SVD
|
|
bin_size: int = 4
|
|
threshold: float | None = 0.05 # Between 0 and 1.0
|
|
|
|
example_position_x: int = 280
|
|
example_position_y: int = 440
|
|
|
|
display_logging_messages: bool = False
|
|
save_logging_messages: bool = False
|
|
|
|
show_example_timeseries: bool = True
|
|
play_movie: bool = True
|
|
|
|
# Post data processing modifiations
|
|
gaussian_blur_kernel_size: int | None = 3
|
|
gaussian_blur_sigma: float = 1.0
|
|
bin_size_post: int | None = None
|
|
|
|
# ------------------------
|
|
example_position_x = example_position_x // bin_size
|
|
example_position_y = example_position_y // bin_size
|
|
if bin_size_post is not None:
|
|
example_position_x = example_position_x // bin_size_post
|
|
example_position_y = example_position_y // bin_size_post
|
|
|
|
torch_device: torch.device = torch.device(
|
|
"cuda:0" if torch.cuda.is_available() else "cpu"
|
|
)
|
|
|
|
af = DataContainer(
|
|
path=path,
|
|
device=torch_device,
|
|
display_logging_messages=display_logging_messages,
|
|
save_logging_messages=save_logging_messages,
|
|
)
|
|
result, mask = af.automatic_load(
|
|
experiment_id=experiment_id,
|
|
trial_id=trial_id,
|
|
start_position=start_position,
|
|
remove_heartbeat=remove_heartbeat, # i.e. use SVD
|
|
bin_size=bin_size,
|
|
initital_mask_name=initital_mask_name,
|
|
initital_mask_update=initital_mask_update,
|
|
initital_mask_roi=initital_mask_roi,
|
|
start_position_coefficients=start_position_coefficients,
|
|
gaussian_blur_kernel_size=gaussian_blur_kernel_size,
|
|
gaussian_blur_sigma=gaussian_blur_sigma,
|
|
bin_size_post=bin_size_post,
|
|
threshold=threshold,
|
|
)
|
|
|
|
if show_example_timeseries:
|
|
plt.plot(result[:, example_position_x, example_position_y].cpu())
|
|
plt.show()
|
|
|
|
if play_movie:
|
|
ani = Anime()
|
|
ani.show(
|
|
result - 1.0, mask=mask, vmin_scale=0.5, vmax_scale=0.5
|
|
) # , vmin=0.98) # , vmin=1.0, vmax_scale=1.0)
|