gevi/olivia_data_plotter_svd.py
2024-03-01 01:36:18 +01:00

82 lines
2.7 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import os
from functions.create_logger import create_logger
from functions.load_config import load_config
from functions.get_trials import get_trials
import h5py # type: ignore
import torch
import argh
def main(*, experiment_id: int = 1, config_filename: str = "config.json") -> None:
mylogger = create_logger(
save_logging_messages=True,
display_logging_messages=True,
log_stage_name="test_xxx",
)
config = load_config(mylogger=mylogger, filename=config_filename)
roi_path: str = config["ref_image_path"]
control_file_handle = h5py.File(os.path.join(roi_path, "ROI_control.mat"), "r")
control_roi = (np.array(control_file_handle["roi"]).T) > 0
control_file_handle.close()
control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1]))
s_darken_file_handle = h5py.File(os.path.join(roi_path, "ROI_sDarken.mat"), "r")
s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0
s_darken_file_handle.close()
s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1]))
raw_data_path: str = os.path.join(
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
data_path: str = str(config["export_path"])
trails = get_trials(path=raw_data_path, experiment_id=experiment_id)
for i in range(0, trails.shape[0]):
trial_id = int(trails[i])
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
mylogger.info(f"Loading files for {experiment_name}")
data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz"))
rs = data["ratio_sequence"]
rs = rs.reshape((rs.shape[0] * rs.shape[1], rs.shape[2]))
rs_c = rs[control_roi, :]
rs_c_core, _, _ = torch.linalg.svd(torch.tensor(rs_c.T), full_matrices=False)
rs_c_core = rs_c_core[:, 0].numpy()
rs_s = rs[s_darken_roi, :]
rs_s_core, _, _ = torch.linalg.svd(torch.tensor(rs_s.T), full_matrices=False)
rs_s_core = rs_s_core[:, 0].numpy()
rs_s_core -= rs_s_core.mean(keepdims=True)
rs_c_core -= rs_c_core.mean(keepdims=True)
rs_c_core *= (rs_s_core * rs_c_core).sum() / (rs_c_core**2).sum()
if i == 0:
ratio_sequence = rs_s_core - rs_c_core
else:
ratio_sequence += rs_s_core - rs_c_core
ratio_sequence /= float(trails.shape[0])
t = np.arange(0, ratio_sequence.shape[0]) / 100.0
plt.plot(t, ratio_sequence, label="sDarken - control")
plt.legend()
plt.xlabel("Time [sec]")
plt.show()
if __name__ == "__main__":
argh.dispatch_command(main)