gevi/functions/perform_donor_volume_rotation.py
2024-02-28 16:14:50 +01:00

140 lines
5 KiB
Python

import torch
import torchvision as tv # type: ignore
import logging
from functions.calculate_rotation import calculate_rotation
from functions.ImageAlignment import ImageAlignment
@torch.no_grad()
def perform_donor_volume_rotation(
mylogger: logging.Logger,
acceptor: torch.Tensor,
donor: torch.Tensor,
oxygenation: torch.Tensor,
volume: torch.Tensor,
ref_image_donor: torch.Tensor,
ref_image_volume: torch.Tensor,
image_alignment: ImageAlignment,
batch_size: int,
config: dict,
fill_value: float = 0,
) -> tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
]:
mylogger.info("Calculate rotation between donor data and donor ref image")
angle_donor = calculate_rotation(
input=donor,
reference_image=ref_image_donor,
image_alignment=image_alignment,
batch_size=batch_size,
)
mylogger.info("Calculate rotation between volume data and volume ref image")
angle_volume = calculate_rotation(
input=volume,
reference_image=ref_image_volume,
image_alignment=image_alignment,
batch_size=batch_size,
)
mylogger.info("Average over both rotations")
donor_threshold: torch.Tensor = torch.sort(torch.abs(angle_donor))[0]
donor_threshold = donor_threshold[
int(
donor_threshold.shape[0]
* float(config["rotation_stabilization_threshold_border"])
)
] * float(config["rotation_stabilization_threshold_factor"])
volume_threshold: torch.Tensor = torch.sort(torch.abs(angle_volume))[0]
volume_threshold = volume_threshold[
int(
volume_threshold.shape[0]
* float(config["rotation_stabilization_threshold_border"])
)
] * float(config["rotation_stabilization_threshold_factor"])
donor_idx = torch.where(torch.abs(angle_donor) > donor_threshold)[0]
volume_idx = torch.where(torch.abs(angle_volume) > volume_threshold)[0]
mylogger.info(
f"Border: {config['rotation_stabilization_threshold_border']}, "
f"factor {config['rotation_stabilization_threshold_factor']} "
)
mylogger.info(
f"Donor threshold: {donor_threshold:.3e}, volume threshold: {volume_threshold:.3e}"
)
mylogger.info(
f"Found broken rotation values: "
f"donor {int(donor_idx.shape[0])}, "
f"volume {int(volume_idx.shape[0])}"
)
angle_donor[donor_idx] = angle_volume[donor_idx]
angle_volume[volume_idx] = angle_donor[volume_idx]
donor_idx = torch.where(torch.abs(angle_donor) > donor_threshold)[0]
volume_idx = torch.where(torch.abs(angle_volume) > volume_threshold)[0]
mylogger.info(
f"After fill in these broken rotation values remain: "
f"donor {int(donor_idx.shape[0])}, "
f"volume {int(volume_idx.shape[0])}"
)
angle_donor[donor_idx] = 0.0
angle_volume[volume_idx] = 0.0
angle_donor_volume = (angle_donor + angle_volume) / 2.0
mylogger.info("Rotate acceptor data based on the average rotation")
for frame_id in range(0, angle_donor_volume.shape[0]):
acceptor[frame_id, ...] = tv.transforms.functional.affine(
img=acceptor[frame_id, ...].unsqueeze(0),
angle=-float(angle_donor_volume[frame_id]),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
mylogger.info("Rotate donor data based on the average rotation")
for frame_id in range(0, angle_donor_volume.shape[0]):
donor[frame_id, ...] = tv.transforms.functional.affine(
img=donor[frame_id, ...].unsqueeze(0),
angle=-float(angle_donor_volume[frame_id]),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
mylogger.info("Rotate oxygenation data based on the average rotation")
for frame_id in range(0, angle_donor_volume.shape[0]):
oxygenation[frame_id, ...] = tv.transforms.functional.affine(
img=oxygenation[frame_id, ...].unsqueeze(0),
angle=-float(angle_donor_volume[frame_id]),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
mylogger.info("Rotate volume data based on the average rotation")
for frame_id in range(0, angle_donor_volume.shape[0]):
volume[frame_id, ...] = tv.transforms.functional.affine(
img=volume[frame_id, ...].unsqueeze(0),
angle=-float(angle_donor_volume[frame_id]),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
return (acceptor, donor, oxygenation, volume, angle_donor_volume)