gevi/reproduction_effort/heartbeat.py
2024-02-14 22:16:41 +01:00

201 lines
5.7 KiB
Python

import numpy as np
import torch
import os
import json
import matplotlib.pyplot as plt
import scipy.io as sio # type: ignore
from functions.binning import binning
from functions.align_cameras import align_cameras
from functions.bandpass import bandpass
from functions.make_mask import make_mask
if torch.cuda.is_available():
device_name: str = "cuda:0"
else:
device_name = "cpu"
print(f"Using device: {device_name}")
device: torch.device = torch.device(device_name)
dtype: torch.dtype = torch.float32
filename_raw: str = f"raw{os.sep}Exp001_Trial001_Part001.npy"
filename_raw_json: str = f"raw{os.sep}Exp001_Trial001_Part001_meta.txt"
filename_mask: str = "2020-12-08maskPixelraw2.mat"
first_none_ramp_frame: int = 100
spatial_width: float = 2
temporal_width: float = 0.1
lower_freqency_bandpass: float = 5.0
upper_freqency_bandpass: float = 14.0
lower_frequency_heartbeat: float = 5.0
upper_frequency_heartbeat: float = 14.0
sample_frequency: float = 100.0
target_camera: list[str] = ["acceptor", "donor"]
regressor_cameras: list[str] = ["oxygenation", "volume"]
batch_size: int = 200
required_order: list[str] = ["acceptor", "donor", "oxygenation", "volume"]
test_overwrite_with_old_bining: bool = False
test_overwrite_with_old_aligned: bool = False
filename_data_binning_replace: str = "bin_old/Exp001_Trial001_Part001.mat"
filename_data_aligned_replace: str = "aligned_old/Exp001_Trial001_Part001.mat"
data = torch.tensor(np.load(filename_raw).astype(np.float32), dtype=dtype)
with open(filename_raw_json, "r") as file_handle:
metadata: dict = json.load(file_handle)
channels: list[str] = metadata["channelKey"]
if test_overwrite_with_old_bining:
data = torch.tensor(
sio.loadmat(filename_data_binning_replace)["nparray"].astype(np.float32),
dtype=dtype,
device=device,
)
else:
data = binning(data).to(device)
ref_image = data[:, :, data.shape[-2] // 2, :].clone()
(
acceptor,
donor,
oxygenation,
volume,
angle_donor_volume,
tvec_donor_volume,
angle_refref,
tvec_refref,
) = align_cameras(
channels=channels,
data=data,
ref_image=ref_image,
device=device,
dtype=dtype,
batch_size=batch_size,
fill_value=-1,
)
del data
camera_sequence: list[torch.Tensor] = []
for cam in required_order:
if cam.startswith("acceptor"):
camera_sequence.append(acceptor.movedim(0, -1).clone())
del acceptor
if cam.startswith("donor"):
camera_sequence.append(donor.movedim(0, -1).clone())
del donor
if cam.startswith("oxygenation"):
camera_sequence.append(oxygenation.movedim(0, -1).clone())
del oxygenation
if cam.startswith("volume"):
camera_sequence.append(volume.movedim(0, -1).clone())
del volume
if test_overwrite_with_old_aligned:
data_aligned_replace: torch.Tensor = torch.tensor(
sio.loadmat(filename_data_aligned_replace)["data"].astype(np.float32),
device=device,
dtype=dtype,
)
camera_sequence[0] = data_aligned_replace[..., 0].clone()
camera_sequence[1] = data_aligned_replace[..., 1].clone()
camera_sequence[2] = data_aligned_replace[..., 2].clone()
camera_sequence[3] = data_aligned_replace[..., 3].clone()
del data_aligned_replace
mask: torch.Tensor = make_mask(
filename_mask=filename_mask,
camera_sequence=camera_sequence,
device=device,
dtype=dtype,
)
mask_flatten = mask.flatten(start_dim=0, end_dim=-1)
original_shape = camera_sequence[0].shape
for i in range(0, len(camera_sequence)):
camera_sequence[i] = bandpass(
data=camera_sequence[i].clone(),
device=camera_sequence[i].device,
low_frequency=lower_freqency_bandpass,
high_frequency=upper_freqency_bandpass,
fs=100.0,
filtfilt_chuck_size=10,
)
camera_sequence[i] = camera_sequence[i].flatten(start_dim=0, end_dim=-2)
camera_sequence[i] = camera_sequence[i][mask_flatten, :]
if (i == 0) or (i == 1):
camera_sequence[i] = camera_sequence[i][:, 1:]
else:
camera_sequence[i] = (
camera_sequence[i][:, 1:] + camera_sequence[i][:, :-1]
) / 2.0
camera_sequence[i] = camera_sequence[i].movedim(0, -1)
camera_sequence[i] -= camera_sequence[i].mean(dim=0, keepdim=True)
camera_sequence_cat = torch.cat(
(camera_sequence[0], camera_sequence[1], camera_sequence[2], camera_sequence[3]),
dim=-1,
)
print(camera_sequence_cat.min(), camera_sequence_cat.max())
u_a, s_a, Vh_a = torch.linalg.svd(camera_sequence_cat, full_matrices=False)
u_a = u_a[:, 0]
Vh_a = Vh_a[0, :] * s_a[0]
heart_beat_activity_map: list[torch.Tensor] = []
start_pos: int = 0
end_pos: int = 0
for i in range(0, len(camera_sequence)):
end_pos = start_pos + int(mask_flatten.sum())
heart_beat_activity_map.append(
torch.full(
(original_shape[0], original_shape[1]),
torch.nan,
device=Vh_a.device,
dtype=Vh_a.dtype,
).flatten(start_dim=0, end_dim=-1)
)
heart_beat_activity_map[-1][mask_flatten] = Vh_a[start_pos:end_pos]
heart_beat_activity_map[-1] = heart_beat_activity_map[-1].reshape(
(original_shape[0], original_shape[1])
)
start_pos = end_pos
full_image = torch.cat(heart_beat_activity_map, dim=1)
# I want to scale the time series to std unity
# and therefore need to increase the amplitudes of the maps
u_a_std = torch.std(u_a)
u_a /= u_a_std
full_image *= u_a_std
plt.subplot(2, 1, 1)
plt.plot(u_a.cpu())
plt.xlabel("Frame ID")
plt.title(
f"Common heartbeat in {lower_freqency_bandpass}Hz - {upper_freqency_bandpass}Hz"
)
plt.subplot(2, 1, 2)
plt.imshow(full_image.cpu(), cmap="hot")
plt.colorbar()
plt.title("acceptor, donor, oxygenation, volume")
plt.show()