kk_contour_net_shallow/optimal_stimulus.py

159 lines
4 KiB
Python
Raw Permalink Normal View History

2023-07-29 16:01:51 +02:00
import torch
import matplotlib.pyplot as plt
import matplotlib.patches as patch
import matplotlib as mpl
from functions.analyse_network import analyse_network
mpl.rcParams["text.usetex"] = True
mpl.rcParams["font.family"] = "serif"
# define parameters
num_iterations: int = 100000
learning_rate: float = 0.1
apply_input_mask: bool = True
mark_region_in_plot: bool = False
sheduler_patience: int = 500
sheduler_factor: float = 0.9
sheduler_eps = 1e-08
target_image_active: float = 1e4
# path to NN
nn = "network_0_seed0_Coignless_83Epoch_2807-1455"
PATH = f"./trained_models/{nn}.pt"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# load and eval model
model = torch.load(PATH).to(device)
model.eval()
print("Full network:")
print(model)
print("")
# enter index to plot:
idx = int(input("Please select layer: "))
print(f"Selected layer {idx}:")
assert idx < len(model)
model = model[: idx + 1]
# random input
input_img = torch.randn(1, 200, 200).to(device)
input_img = input_img.unsqueeze(0)
input_img.requires_grad_(True) # type: ignore
input_shape = input_img.shape
assert input_shape[-2] == input_shape[-1]
coordinate_list, layer_type_list, pixel_used = analyse_network(
model=model, input_shape=int(input_shape[-1])
)
output_shape = model(input_img).shape
target_image = torch.zeros(
(*output_shape,), dtype=input_img.dtype, device=input_img.device
)
input_parameter = torch.nn.Parameter(input_img)
print(
(
f"Available max positions: f:{target_image.shape[1]} "
f"x:{target_image.shape[2]} y:{target_image.shape[3]}"
)
)
# select neuron and plot for all feature maps (?)
neuron_f = int(input("Please select neuron_f: "))
neuron_x = target_image.shape[2] // 2
neuron_y = target_image.shape[3] // 2
print(f"Selected neuron {neuron_f}, {neuron_x}, {neuron_y}")
# Input mask ->
active_input_x = coordinate_list[-1][:, neuron_x].clone()
active_input_y = coordinate_list[-1][:, neuron_y].clone()
input_mask: torch.Tensor = torch.zeros_like(input_img)
input_mask[
:,
:,
active_input_x.type(torch.int64).unsqueeze(-1),
active_input_y.type(torch.int64).unsqueeze(0),
] = 1
rect_x = [int(active_input_x.min()), int(active_input_x.max())]
rect_y = [int(active_input_y.min()), int(active_input_y.max())]
# <- Input mask
if apply_input_mask:
with torch.no_grad():
input_img *= input_mask
optimizer = torch.optim.Adam([{"params": input_parameter}], lr=learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
patience=sheduler_patience,
factor=sheduler_factor,
eps=sheduler_eps * 0.1,
)
target_image[0, neuron_f, neuron_x, neuron_y] = target_image_active
counter: int = 0
while (optimizer.param_groups[0]["lr"] > sheduler_eps) and (counter < num_iterations):
optimizer.zero_grad()
output = model(input_parameter)
loss = torch.nn.functional.mse_loss(output, target_image)
loss.backward()
if counter % 1000 == 0:
print(
f"{counter} : loss={float(loss):.3e} lr={optimizer.param_groups[0]['lr']:.3e}"
)
optimizer.step()
if apply_input_mask:
with torch.no_grad():
input_parameter.data[torch.where(input_mask == 0)] = 0.0
with torch.no_grad():
max_data = torch.abs(input_parameter.data).max()
if max_data > 1.0:
input_parameter.data /= max_data
if (
torch.isfinite(input_parameter.data).sum().cpu()
!= torch.tensor(input_parameter.data.size()).prod()
):
print(f"Found NaN in step: {counter}, use a smaller initial lr")
exit()
scheduler.step(float(loss))
counter += 1
# plot image:
_, ax = plt.subplots()
ax.imshow(input_img.squeeze().detach().cpu().numpy(), cmap="gray")
if mark_region_in_plot:
edgecolor = "sienna"
kernel = patch.Rectangle(
(rect_y[0], rect_x[0]),
int(rect_y[1] - rect_y[0]),
int(rect_x[1] - rect_x[0]),
linewidth=1.2,
edgecolor=edgecolor,
facecolor="none",
)
ax.add_patch(kernel)
plt.show(block=True)