2023-07-22 14:53:46 +02:00
|
|
|
import torch
|
|
|
|
import logging
|
|
|
|
|
|
|
|
|
|
|
|
def train(
|
|
|
|
model: torch.nn.modules.container.Sequential,
|
|
|
|
loader: torch.utils.data.dataloader.DataLoader,
|
|
|
|
optimizer: torch.optim.Adam | torch.optim.SGD,
|
|
|
|
epoch: int,
|
|
|
|
device: torch.device,
|
|
|
|
tb,
|
|
|
|
test_acc,
|
|
|
|
logger: logging.Logger,
|
|
|
|
train_accuracy: list[float],
|
|
|
|
train_losses: list[float],
|
|
|
|
train_loss: list[float],
|
|
|
|
scale_data: float,
|
|
|
|
) -> float:
|
|
|
|
num_train_pattern: int = 0
|
|
|
|
running_loss: float = 0.0
|
|
|
|
correct: int = 0
|
|
|
|
pattern_count: float = 0.0
|
|
|
|
|
|
|
|
model.train()
|
|
|
|
for data in loader:
|
|
|
|
label = data[0].to(device)
|
|
|
|
image = data[1].type(dtype=torch.float32).to(device)
|
|
|
|
if scale_data > 0:
|
|
|
|
image /= scale_data
|
|
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
output = model(image)
|
2023-07-27 20:13:44 +02:00
|
|
|
if output.ndim == 4:
|
|
|
|
output = output.squeeze(-1).squeeze(-1)
|
|
|
|
assert output.ndim == 2
|
|
|
|
|
2023-07-22 14:53:46 +02:00
|
|
|
loss = torch.nn.functional.cross_entropy(output, label, reduction="sum")
|
|
|
|
loss.backward()
|
|
|
|
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
# for loss and accuracy plotting:
|
|
|
|
num_train_pattern += int(label.shape[0])
|
|
|
|
pattern_count += float(label.shape[0])
|
|
|
|
running_loss += float(loss)
|
|
|
|
train_loss.append(float(loss))
|
|
|
|
prediction = output.argmax(dim=1)
|
|
|
|
correct += prediction.eq(label).sum().item()
|
|
|
|
|
|
|
|
total_number_of_pattern: int = int(len(loader)) * int(label.shape[0])
|
|
|
|
|
|
|
|
# infos:
|
|
|
|
logger.info(
|
|
|
|
(
|
|
|
|
"Train Epoch:"
|
|
|
|
f" {epoch}"
|
|
|
|
f" [{int(pattern_count)}/{total_number_of_pattern}"
|
|
|
|
f" ({100.0 * pattern_count / total_number_of_pattern:.2f}%)],"
|
|
|
|
f" Loss: {float(running_loss) / float(num_train_pattern):.4e},"
|
|
|
|
f" Acc: {(100.0 * correct / num_train_pattern):.2f}"
|
|
|
|
f" Test Acc: {test_acc:.2f}%,"
|
|
|
|
f" LR: {optimizer.param_groups[0]['lr']:.2e}"
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
acc = 100.0 * correct / num_train_pattern
|
|
|
|
train_accuracy.append(acc)
|
|
|
|
|
|
|
|
epoch_loss = running_loss / pattern_count
|
|
|
|
train_losses.append(epoch_loss)
|
|
|
|
|
|
|
|
# add to tb:
|
|
|
|
tb.add_scalar("Train Loss", loss.item(), epoch)
|
|
|
|
tb.add_scalar("Train Performance", torch.tensor(acc), epoch)
|
|
|
|
tb.add_scalar("Train Number Correct", torch.tensor(correct), epoch)
|
|
|
|
|
|
|
|
# for parameters:
|
|
|
|
for name, param in model.named_parameters():
|
|
|
|
if "weight" in name or "bias" in name:
|
|
|
|
tb.add_histogram(f"{name}", param.data.clone(), epoch)
|
|
|
|
|
|
|
|
tb.flush()
|
|
|
|
|
|
|
|
return epoch_loss
|