kk_contour_net_shallow/RenderStimuli/meanGabors.py

73 lines
2.4 KiB
Python
Raw Normal View History

2023-07-28 15:42:20 +02:00
import torch
import scipy
import os
import matplotlib.pyplot as plt
import numpy as np
import glob
import logging
# this code calculates the mean number of Gabor patches inside a stimulus for each class
logging.basicConfig(filename='AngularAvrg.txt', filemode='w', format='%(message)s', level=logging.INFO)
avg_avg_size: list = []
n_contours = 0
x_range = [140, 940]
y_range = [140, 940]
for i in range(10):
path = f"/data_1/kk/StimulusGeneration/Alicorn/Angular/Ang0{i}0_n10000"
files = glob.glob(path + os.sep + "*.mat")
n_files = len(files)
print(f"Going through {n_files} contour files...")
logging.info(f"Going through {n_files} contour files...")
varname=f"Table_intr_crn0{i}0"
varname_dist=f"Table_intr_crn0{i}0_dist"
for i_file in range(n_files):
# get path, basename, suffix...
full = files[i_file]
path, file = os.path.split(full)
base, suffix = os.path.splitext(file)
# load file
print(full)
mat = scipy.io.loadmat(full)
if "dist" in full:
posori = mat[varname_dist]
else:
posori = mat[varname]
sec_dim_sizes = [] #[posori[i][0].shape[1] for i in range(posori.shape[0])]
for s in range(posori.shape[0]):
# Extract the entry
entry = posori[s][0]
# Get the x and y coordinates
x = entry[1]
y = entry[2]
# Find the indices of the coordinates that fall within the specified range
idx = np.where((x >= x_range[0]) & (x <= x_range[1]) & (y >= y_range[0]) & (y <= y_range[1]))[0]
# Calculate the size of the second dimension while only considering the coordinates within the specified range
sec_dim_size = len(idx)
# Append the size to the list
sec_dim_sizes.append(sec_dim_size)
avg_size = np.mean(sec_dim_sizes)
print(f"Average 2nd dim of posori: {avg_size}")
logging.info(f"Average 2nd dim of posori: {avg_size}")
avg_avg_size.append(avg_size)
n_contours += posori.shape[0]
print(f"...overall {n_contours} contours so far.")
logging.info(f"...overall {n_contours} contours so far.")
# calculate avg number Gabors over whole condition
overall = np.mean(avg_avg_size)
print(f"OVERALL average 2nd dim of posori: {overall}")
logging.info(f"OVERALL average 2nd dim of posori: {overall}")