270 lines
8.3 KiB
Python
270 lines
8.3 KiB
Python
|
# %%
|
||
|
|
||
|
import torch
|
||
|
import time
|
||
|
import scipy
|
||
|
import os
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
import contours
|
||
|
import glob
|
||
|
|
||
|
USE_CEXT_FROM_DAVID = True
|
||
|
if USE_CEXT_FROM_DAVID:
|
||
|
# from CPPExtensions.PyTCopyCPU import TCopyCPU
|
||
|
from CPPExtensions.PyTCopyCPU import TCopyCPU as render_stimulus_CPP
|
||
|
|
||
|
|
||
|
def render_gaborfield(posori, params, verbose=False):
|
||
|
scale_factor = params["scale_factor"]
|
||
|
n_source = params["n_source"]
|
||
|
n_change = params["n_change"]
|
||
|
n_phase = params["n_phase"]
|
||
|
|
||
|
# convert sizes to pixel units
|
||
|
lambda_PIX = params["lambda_gabor"] * scale_factor
|
||
|
sigma_PIX = params["sigma_gabor"] * scale_factor
|
||
|
r_gab_PIX = int(params["d_gabor"] * scale_factor / 2)
|
||
|
d_gab_PIX = r_gab_PIX * 2 + 1
|
||
|
|
||
|
# make filterbank
|
||
|
gabors = torch.zeros(
|
||
|
[n_phase, n_source, n_change, d_gab_PIX, d_gab_PIX], dtype=torch.float32
|
||
|
)
|
||
|
for i_phase in range(n_phase):
|
||
|
phase = (torch.pi * 2 * i_phase) / n_phase
|
||
|
gabors[i_phase], dirs_source, dirs_change = contours.gaborner_filterbank(
|
||
|
r_gab=r_gab_PIX,
|
||
|
n_source=n_source,
|
||
|
n_change=n_change,
|
||
|
lambdah=lambda_PIX,
|
||
|
sigma=sigma_PIX,
|
||
|
phase=phase,
|
||
|
normalize=params["normalize_gabor"],
|
||
|
torch_device="cpu",
|
||
|
)
|
||
|
gabors = gabors.reshape([n_phase * n_source * n_change, d_gab_PIX, d_gab_PIX])
|
||
|
|
||
|
n_contours = posori.shape[0]
|
||
|
|
||
|
# discretize ALL stimuli
|
||
|
if verbose:
|
||
|
print("Discretizing START!!!")
|
||
|
t_dis0 = time.perf_counter()
|
||
|
(
|
||
|
index_srcchg,
|
||
|
index_x,
|
||
|
index_y,
|
||
|
x_canvas,
|
||
|
y_canvas,
|
||
|
) = contours.discretize_stimuli(
|
||
|
posori=posori,
|
||
|
x_range=params["x_range"],
|
||
|
y_range=params["y_range"],
|
||
|
scale_factor=scale_factor,
|
||
|
r_gab_PIX=r_gab_PIX,
|
||
|
n_source=n_source,
|
||
|
n_change=n_change,
|
||
|
n_phase=n_phase,
|
||
|
torch_device="cpu",
|
||
|
)
|
||
|
t_dis1 = time.perf_counter()
|
||
|
if verbose:
|
||
|
print(f"Discretizing END, took {t_dis1-t_dis0} seconds.!!!")
|
||
|
|
||
|
if verbose:
|
||
|
print("Generation START!!!")
|
||
|
t0 = time.perf_counter()
|
||
|
|
||
|
if not USE_CEXT_FROM_DAVID:
|
||
|
if verbose:
|
||
|
print(" (using NUMPY...)")
|
||
|
output = torch.zeros(
|
||
|
(
|
||
|
n_contours,
|
||
|
y_canvas - d_gab_PIX + 1,
|
||
|
x_canvas - d_gab_PIX + 1,
|
||
|
),
|
||
|
device="cpu",
|
||
|
dtype=torch.float32,
|
||
|
)
|
||
|
kernels_cpu = gabors.detach().cpu()
|
||
|
for i_con in range(n_contours):
|
||
|
output[i_con] = contours.render_stimulus(
|
||
|
kernels=kernels_cpu,
|
||
|
index_element=index_srcchg[i_con],
|
||
|
index_y=index_y[i_con],
|
||
|
index_x=index_x[i_con],
|
||
|
y_canvas=y_canvas,
|
||
|
x_canvas=x_canvas,
|
||
|
torch_device="cpu",
|
||
|
)
|
||
|
output = torch.clip(output, -1, +1)
|
||
|
|
||
|
else:
|
||
|
if verbose:
|
||
|
print(" (using C++...)")
|
||
|
copyier = render_stimulus_CPP()
|
||
|
number_of_cpu_processes = os.cpu_count()
|
||
|
output_dav_tmp = torch.zeros(
|
||
|
(
|
||
|
n_contours,
|
||
|
y_canvas + 2 * r_gab_PIX,
|
||
|
x_canvas + 2 * r_gab_PIX,
|
||
|
),
|
||
|
device="cpu",
|
||
|
dtype=torch.float32,
|
||
|
)
|
||
|
|
||
|
# Umsort!
|
||
|
n_elements_total = 0
|
||
|
for i_con in range(n_contours):
|
||
|
n_elements_total += len(index_x[i_con])
|
||
|
sparse_matrix = torch.zeros(
|
||
|
(n_elements_total, 4), device="cpu", dtype=torch.int64
|
||
|
)
|
||
|
i_elements_total = 0
|
||
|
for i_con in range(n_contours):
|
||
|
n_add = len(index_x[i_con])
|
||
|
sparse_matrix[i_elements_total : i_elements_total + n_add, 0] = i_con
|
||
|
sparse_matrix[
|
||
|
i_elements_total : i_elements_total + n_add, 1
|
||
|
] = index_srcchg[i_con]
|
||
|
sparse_matrix[i_elements_total : i_elements_total + n_add, 2] = index_y[
|
||
|
i_con
|
||
|
]
|
||
|
sparse_matrix[i_elements_total : i_elements_total + n_add, 3] = index_x[
|
||
|
i_con
|
||
|
]
|
||
|
i_elements_total += n_add
|
||
|
assert i_elements_total == n_elements_total, "UNBEHAGEN macht sich breit!"
|
||
|
|
||
|
# output_dav_tmp.fill_(0.0)
|
||
|
copyier.process(
|
||
|
sparse_matrix.data_ptr(),
|
||
|
int(sparse_matrix.shape[0]),
|
||
|
int(sparse_matrix.shape[1]),
|
||
|
gabors.data_ptr(),
|
||
|
int(gabors.shape[0]),
|
||
|
int(gabors.shape[1]),
|
||
|
int(gabors.shape[2]),
|
||
|
output_dav_tmp.data_ptr(),
|
||
|
int(output_dav_tmp.shape[0]),
|
||
|
int(output_dav_tmp.shape[1]),
|
||
|
int(output_dav_tmp.shape[2]),
|
||
|
int(number_of_cpu_processes),
|
||
|
)
|
||
|
output = torch.clip(
|
||
|
output_dav_tmp[
|
||
|
:,
|
||
|
d_gab_PIX - 1 : -(d_gab_PIX - 1),
|
||
|
d_gab_PIX - 1 : -(d_gab_PIX - 1),
|
||
|
],
|
||
|
-1,
|
||
|
+1,
|
||
|
)
|
||
|
|
||
|
t1 = time.perf_counter()
|
||
|
if verbose:
|
||
|
print(f"Generating END, took {t1-t0} seconds.!!!")
|
||
|
|
||
|
if verbose:
|
||
|
print("Showing first and last stimulus generated...")
|
||
|
plt.imshow(output[0], cmap="gray", vmin=-1, vmax=+1)
|
||
|
plt.show()
|
||
|
plt.imshow(output[-1], cmap="gray", vmin=-1, vmax=+1)
|
||
|
plt.show()
|
||
|
print(f"Processed {n_contours} stimuli in {t1-t_dis0} seconds!")
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
def render_gaborfield_frommatfiles(files, params, varname, varname_dist, altpath=None, verbose=False):
|
||
|
n_total = 0
|
||
|
n_files = len(files)
|
||
|
print(f"Going through {n_files} contour files...")
|
||
|
|
||
|
for i_file in range(n_files):
|
||
|
# get path, basename, suffix...
|
||
|
full = files[i_file]
|
||
|
path, file = os.path.split(full)
|
||
|
base, suffix = os.path.splitext(file)
|
||
|
|
||
|
# load file
|
||
|
mat = scipy.io.loadmat(full)
|
||
|
# posori = mat[varname]
|
||
|
if "dist" in full:
|
||
|
posori = mat[varname_dist]
|
||
|
else:
|
||
|
posori = mat[varname]
|
||
|
n_contours = posori.shape[0]
|
||
|
n_total += n_contours
|
||
|
print(f" ...file {file} contains {n_contours} contours.")
|
||
|
|
||
|
# process...
|
||
|
gaborfield = render_gaborfield(posori, params=params, verbose=verbose)
|
||
|
|
||
|
# save
|
||
|
if altpath:
|
||
|
savepath = altpath
|
||
|
else:
|
||
|
savepath = path
|
||
|
savefull = savepath + os.sep + base + "_RENDERED.npz"
|
||
|
print(f" ...saving under {savefull}...")
|
||
|
gaborfield = (torch.clip(gaborfield, -1, 1) * 127 + 128).type(torch.uint8)
|
||
|
np.savez_compressed(savefull, gaborfield=gaborfield)
|
||
|
|
||
|
return n_total
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
TESTMODE = "files" # "files" or "posori"
|
||
|
|
||
|
# cutout for stimuli, and gabor parameters
|
||
|
params = {
|
||
|
"x_range": [140, 940],
|
||
|
"y_range": [140, 940],
|
||
|
"scale_factor": 0.25, # scale to convert coordinates to pixel values
|
||
|
"d_gabor": 40,
|
||
|
"lambda_gabor": 16,
|
||
|
"sigma_gabor": 8,
|
||
|
"n_phase": 4,
|
||
|
"normalize_gabor": True,
|
||
|
# number of directions for dictionary
|
||
|
"n_source": 32,
|
||
|
"n_change": 32,
|
||
|
}
|
||
|
|
||
|
if TESTMODE == "files":
|
||
|
num = int(9)
|
||
|
path = f"/data_1/kk/StimulusGeneration/Alicorn/Coignless/Base0{num}0_n100"
|
||
|
files = glob.glob(path + os.sep + "*.mat")
|
||
|
|
||
|
t0 = time.perf_counter()
|
||
|
n_total = render_gaborfield_frommatfiles(
|
||
|
files=files, params=params, varname=f"Table_base_crn0{num}0", varname_dist=f"Table_base_crn0{num}0_dist", altpath="./Output100/Coignless" #intr crn base
|
||
|
)
|
||
|
t1 = time.perf_counter()
|
||
|
dt = t1 - t0
|
||
|
print(
|
||
|
f"Rendered {n_total} contours in {dt} secs, yielding {n_total/dt} contours/sec."
|
||
|
)
|
||
|
|
||
|
if TESTMODE == "posori":
|
||
|
print("Sample stimulus generation:")
|
||
|
print("===========================")
|
||
|
|
||
|
# load contours, multiplex coordinates to simulate a larger set of contours
|
||
|
n_multiplex = 500
|
||
|
mat = scipy.io.loadmat("z.mat")
|
||
|
posori = np.tile(mat["z"], (n_multiplex, 1))
|
||
|
n_contours = posori.shape[0]
|
||
|
print(f"Processing {n_contours} contour stimuli")
|
||
|
|
||
|
output = render_gaborfield(posori, params=params, verbose=True)
|
||
|
# output8 = (torch.clip(output, -1, 1) * 127 + 128).type(torch.uint8)
|
||
|
# np.savez_compressed("output8_compressed.npz", output8=output8)
|
||
|
|
||
|
|
||
|
# %%
|