2023-07-19 18:05:00 +02:00
|
|
|
from scipy.stats import fisher_exact
|
|
|
|
|
|
|
|
|
|
|
|
def fisher_excat_upper(
|
|
|
|
correct_pattern_count: int, number_of_pattern: int, p_threshold: float = 5.0 / 100.0
|
2023-07-19 18:34:10 +02:00
|
|
|
) -> float:
|
2023-07-19 18:05:00 +02:00
|
|
|
error_pattern_count = int(number_of_pattern - correct_pattern_count)
|
|
|
|
|
2023-07-19 18:34:10 +02:00
|
|
|
bound = 100.0
|
2023-07-19 18:05:00 +02:00
|
|
|
for u in range(0, correct_pattern_count):
|
|
|
|
z = int(error_pattern_count + u)
|
|
|
|
_, pvalue = fisher_exact(
|
|
|
|
[[correct_pattern_count, error_pattern_count], [number_of_pattern - z, z]],
|
|
|
|
alternative="greater",
|
|
|
|
)
|
|
|
|
if bool(pvalue > p_threshold) is False:
|
|
|
|
bound = u * 100.0 / number_of_pattern
|
|
|
|
break
|
|
|
|
|
|
|
|
return bound
|
|
|
|
|
|
|
|
|
|
|
|
def fisher_excat_lower(
|
|
|
|
correct_pattern_count: int, number_of_pattern: int, p_threshold: float = 5.0 / 100.0
|
2023-07-19 18:34:10 +02:00
|
|
|
) -> float:
|
2023-07-19 18:05:00 +02:00
|
|
|
error_pattern_count = int(number_of_pattern - correct_pattern_count)
|
|
|
|
|
2023-07-19 18:34:10 +02:00
|
|
|
bound = 0.0
|
2023-07-19 18:05:00 +02:00
|
|
|
for u in range(0, error_pattern_count):
|
|
|
|
z = int(error_pattern_count - u)
|
|
|
|
_, pvalue = fisher_exact(
|
|
|
|
[[correct_pattern_count, error_pattern_count], [number_of_pattern - z, z]],
|
|
|
|
alternative="less",
|
|
|
|
)
|
|
|
|
if bool(pvalue > p_threshold) is False:
|
|
|
|
bound = u * 100.0 / number_of_pattern
|
|
|
|
break
|
|
|
|
|
|
|
|
return bound
|