kk_contour_net_shallow/cnn_training.py

433 lines
15 KiB
Python
Raw Normal View History

2023-07-22 14:53:31 +02:00
import torch
import numpy as np
import datetime
import argh
import time
import os
import json
import glob
from jsmin import jsmin
from natsort import natsorted
from functions.alicorn_data_loader import alicorn_data_loader
from functions.train import train
from functions.test import test
from functions.make_cnn import make_cnn
from functions.set_seed import set_seed
from functions.plot_intermediate import plot_intermediate
from functions.create_logger import create_logger
# to disable logging output from Tensorflow
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
from torch.utils.tensorboard import SummaryWriter
def main(
idx_conv_out_channels_list: int = 0,
idx_conv_kernel_sizes: int = 0,
idx_conv_stride_sizes: int = 0,
seed_counter: int = 0,
) -> None:
config_filenname = "config.json"
with open(config_filenname, "r") as file_handle:
config = json.loads(jsmin(file_handle.read()))
logger = create_logger(
save_logging_messages=bool(config["save_logging_messages"]),
display_logging_messages=bool(config["display_logging_messages"]),
)
# network settings:
conv_out_channels_list: list[list[int]] = config["conv_out_channels_list"]
conv_kernel_sizes: list[list[int]] = config["conv_kernel_sizes"]
conv_stride_sizes: list[int] = config["conv_stride_sizes"]
num_pfinkel: list = np.arange(
int(config["num_pfinkel_start"]),
int(config["num_pfinkel_stop"]),
int(config["num_pfinkel_step"]),
).tolist()
run_network(
out_channels=conv_out_channels_list[int(idx_conv_out_channels_list)],
kernel_size=conv_kernel_sizes[int(idx_conv_kernel_sizes)],
stride=conv_stride_sizes[int(idx_conv_stride_sizes)],
activation_function=str(config["activation_function"]),
train_first_layer=bool(config["train_first_layer"]),
seed_counter=seed_counter,
minimum_learning_rate=float(config["minimum_learning_rate"]),
conv_0_kernel_size=int(config["conv_0_kernel_size"]),
mp_1_kernel_size=int(config["mp_1_kernel_size"]),
mp_1_stride=int(config["mp_1_stride"]),
batch_size_train=int(config["batch_size_train"]),
batch_size_test=int(config["batch_size_test"]),
learning_rate=float(config["learning_rate"]),
max_epochs=int(config["max_epochs"]),
save_model=bool(config["save_model"]),
stimuli_per_pfinkel=int(config["stimuli_per_pfinkel"]),
num_pfinkel=num_pfinkel,
logger=logger,
save_ever_x_epochs=int(config["save_ever_x_epochs"]),
scheduler_patience=int(config["scheduler_patience"]),
condition=str(config["condition"]),
data_path=str(config["data_path"]),
pooling_type=str(config["pooling_type"]),
conv_0_enable_softmax=bool(config["conv_0_enable_softmax"]),
2023-07-22 16:52:19 +02:00
conv_0_power_softmax=float(config["conv_0_power_softmax"]),
2023-07-23 01:45:59 +02:00
conv_0_meanmode_softmax=bool(config["conv_0_meanmode_softmax"]),
2023-07-23 02:02:41 +02:00
conv_0_no_input_mode_softmax=bool(config["conv_0_no_input_mode_softmax"]),
2023-07-22 14:53:31 +02:00
scale_data=int(config["scale_data"]),
use_scheduler=bool(config["use_scheduler"]),
use_adam=bool(config["use_adam"]),
use_plot_intermediate=bool(config["use_plot_intermediate"]),
leak_relu_negative_slope=float(config["leak_relu_negative_slope"]),
scheduler_verbose=bool(config["scheduler_verbose"]),
scheduler_factor=float(config["scheduler_factor"]),
precision_100_percent=int(config["precision_100_percent"]),
scheduler_threshold=float(config["scheduler_threshold"]),
model_continue=bool(config["model_continue"]),
initial_model_path=str(config["initial_model_path"]),
tb_runs_path=str(config["tb_runs_path"]),
trained_models_path=str(config["trained_models_path"]),
performance_data_path=str(config["performance_data_path"]),
)
def run_network(
out_channels: list[int],
kernel_size: list[int],
num_pfinkel: list,
logger,
stride: int,
activation_function: str,
train_first_layer: bool,
seed_counter: int,
minimum_learning_rate: float,
conv_0_kernel_size: int,
mp_1_kernel_size: int,
mp_1_stride: int,
scheduler_patience: int,
batch_size_train: int,
batch_size_test: int,
learning_rate: float,
max_epochs: int,
save_model: bool,
stimuli_per_pfinkel: int,
save_ever_x_epochs: int,
condition: str,
data_path: str,
pooling_type: str,
conv_0_enable_softmax: bool,
2023-07-22 16:52:19 +02:00
conv_0_power_softmax: float,
2023-07-23 01:45:59 +02:00
conv_0_meanmode_softmax: bool,
2023-07-23 02:02:41 +02:00
conv_0_no_input_mode_softmax: bool,
2023-07-22 14:53:31 +02:00
scale_data: float,
use_scheduler: bool,
use_adam: bool,
use_plot_intermediate: bool,
leak_relu_negative_slope: float,
scheduler_verbose: bool,
scheduler_factor: float,
precision_100_percent: int,
scheduler_threshold: float,
model_continue: bool,
initial_model_path: str,
tb_runs_path: str,
trained_models_path: str,
performance_data_path: str,
) -> None:
# define device:
device_str: str = "cuda:0" if torch.cuda.is_available() else "cpu"
logger.info(f"Using {device_str} device")
device: torch.device = torch.device(device_str)
torch.set_default_dtype(torch.float32)
# -------------------------------------------------------------------
logger.info("-==- START -==-")
train_accuracy: list[float] = []
train_losses: list[float] = []
train_loss: list[float] = []
test_accuracy: list[float] = []
test_losses: list[float] = []
# prepare data:
logger.info(num_pfinkel)
logger.info(condition)
logger.info("Loading training data")
data_train = alicorn_data_loader(
num_pfinkel=num_pfinkel,
load_stimuli_per_pfinkel=stimuli_per_pfinkel,
condition=condition,
logger=logger,
data_path=data_path,
)
logger.info("Loading test data")
data_test = alicorn_data_loader(
num_pfinkel=num_pfinkel,
load_stimuli_per_pfinkel=stimuli_per_pfinkel,
condition=condition,
logger=logger,
data_path=data_path,
)
logger.info("Loading done!")
# data loader
loader_train = torch.utils.data.DataLoader(
data_train, shuffle=True, batch_size=batch_size_train
)
loader_test = torch.utils.data.DataLoader(
data_test, shuffle=False, batch_size=batch_size_test
)
previous_test_acc: float = -1
# set seed for reproducibility
set_seed(seed=int(seed_counter), logger=logger)
# number conv layer:
if train_first_layer:
num_conv_layers = len(out_channels)
else:
num_conv_layers = len(out_channels) if len(out_channels) >= 2 else 1
# determine num conv layers
model_name = (
f"ArghCNN__MPk3s2_numConvLayers{num_conv_layers}"
f"_outChannels{out_channels}_kernelSize{kernel_size}_"
f"{activation_function}_stride{stride}_"
f"trainFirstConvLayer{train_first_layer}_"
f"seed{seed_counter}_{condition}_MPk3s2"
)
current = datetime.datetime.now().strftime("%d%m-%H%M")
# new tb session
os.makedirs(tb_runs_path, exist_ok=True)
path: str = os.path.join(tb_runs_path, f"{model_name}")
tb = SummaryWriter(path)
# --------------------------------------------------------------------------
# print network configuration:
logger.info("----------------------------------------------------")
logger.info(f"Number conv layers: {num_conv_layers}")
logger.info(f"Output channels: {out_channels}")
logger.info(f"Kernel sizes: {kernel_size}")
logger.info(f"Stride: {stride}")
logger.info(f"Activation function: {activation_function}")
logger.info(f"Training conv 0: {train_first_layer}")
logger.info(f"Seed: {seed_counter}")
logger.info(f"LR-scheduler patience: {scheduler_patience}")
logger.info(f"Pooling layer kernel: {mp_1_kernel_size}, stride: {mp_1_stride}")
# define model:
if model_continue:
filename_list: list = natsorted(
glob.glob(os.path.join(initial_model_path, str("*.pt")))
)
assert len(filename_list) > 0
model_filename: str = filename_list[-1]
logger.info(f"Load filename: {model_filename}")
2023-07-22 16:52:19 +02:00
model = torch.load(model_filename, map_location=device)
2023-07-22 14:53:31 +02:00
else:
model = make_cnn(
conv_out_channels_list=out_channels,
conv_kernel_size=kernel_size,
conv_stride_size=stride,
conv_activation_function=activation_function,
train_conv_0=train_first_layer,
conv_0_kernel_size=conv_0_kernel_size,
mp_1_kernel_size=mp_1_kernel_size,
mp_1_stride=mp_1_stride,
logger=logger,
pooling_type=pooling_type,
conv_0_enable_softmax=conv_0_enable_softmax,
l_relu_negative_slope=leak_relu_negative_slope,
2023-07-22 16:52:19 +02:00
conv_0_power_softmax=conv_0_power_softmax,
2023-07-23 01:45:59 +02:00
conv_0_meanmode_softmax=conv_0_meanmode_softmax,
2023-07-23 02:02:41 +02:00
conv_0_no_input_mode_softmax=conv_0_no_input_mode_softmax,
2023-07-22 14:53:31 +02:00
).to(device)
logger.info(model)
old_params: dict = {}
for name, param in model.named_parameters():
old_params[name] = param.data.detach().cpu().clone()
# pararmeters for training:
param_list: list = []
for i in range(0, len(model)):
if (not train_first_layer) and (i == 0):
pass
else:
for name, param in model[i].named_parameters():
logger.info(f"Learning parameter: layer: {i} name: {name}")
param_list.append(param)
for name, param in model.named_parameters():
assert (
torch.isfinite(param.data).sum().cpu()
== torch.tensor(param.data.size()).prod()
), name
# optimizer and learning rate scheduler
if use_adam:
optimizer = torch.optim.Adam(param_list, lr=learning_rate)
else:
optimizer = torch.optim.SGD(param_list, lr=learning_rate) # type: ignore
if use_scheduler:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
patience=scheduler_patience,
eps=minimum_learning_rate / 10,
verbose=scheduler_verbose,
factor=scheduler_factor,
threshold=scheduler_threshold,
)
# training loop:
logger.info("-==- Data and network loader: Done -==-")
t_dis0 = time.perf_counter()
for epoch in range(1, max_epochs + 1):
# train
logger.info("-==- Training... -==-")
running_loss = train(
model=model,
loader=loader_train,
optimizer=optimizer,
epoch=epoch,
device=device,
tb=tb,
test_acc=previous_test_acc,
logger=logger,
train_accuracy=train_accuracy,
train_losses=train_losses,
train_loss=train_loss,
scale_data=scale_data,
)
# logging:
logger.info("")
logger.info("Check for changes in the weights:")
for name, param in model.named_parameters():
if isinstance(old_params[name], torch.Tensor) and isinstance(
param.data, torch.Tensor
):
temp_torch = param.data.detach().cpu().clone()
if old_params[name].ndim == temp_torch.ndim:
if old_params[name].size() == temp_torch.size():
abs_diff = torch.abs(old_params[name] - temp_torch).max()
logger.info(f"Parameter {name}: {abs_diff:.3e}")
old_params[name] = temp_torch
logger.info("")
logger.info("-==- Testing... -==-")
previous_test_acc = test( # type: ignore
model=model,
loader=loader_test,
device=device,
tb=tb,
epoch=epoch,
logger=logger,
test_accuracy=test_accuracy,
test_losses=test_losses,
scale_data=scale_data,
)
logger.info(f"Time required: {time.perf_counter()-t_dis0:.2e} sec")
# save model after every 100th epoch:
if save_model and (epoch % save_ever_x_epochs == 0):
pt_filename: str = f"{model_name}_{epoch}Epoch_{current}.pt"
logger.info("")
logger.info(f"Saved model: {pt_filename}")
os.makedirs(trained_models_path, exist_ok=True)
torch.save(
model,
os.path.join(
trained_models_path,
pt_filename,
),
)
# check nan
for name, param in model.named_parameters():
assert (
torch.isfinite(param.data).sum().cpu()
== torch.tensor(param.data.size()).prod()
), name
# update scheduler
if use_scheduler:
if scheduler_verbose and isinstance(scheduler.best, float):
logger.info(
"Step LR scheduler: "
f"Loss: {running_loss:.2e} "
f"Best: {scheduler.best:.2e} "
f"Delta: {running_loss-scheduler.best:.2e} "
f"Threshold: {scheduler.threshold:.2e} "
f"Number of bad epochs: {scheduler.num_bad_epochs} "
f"Patience: {scheduler.patience} "
)
scheduler.step(running_loss)
# stop learning: lr too small
if optimizer.param_groups[0]["lr"] <= minimum_learning_rate:
logger.info("Learning rate is too small. Stop training.")
break
# stop learning: done
if round(previous_test_acc, precision_100_percent) == 100.0:
logger.info("100% test performance reached. Stop training.")
break
if use_plot_intermediate:
plot_intermediate(
train_accuracy=train_accuracy,
test_accuracy=test_accuracy,
train_losses=train_losses,
test_losses=test_losses,
save_name=model_name,
)
os.makedirs(performance_data_path, exist_ok=True)
np.savez(
os.path.join(performance_data_path, f"performances_{model_name}.npz"),
train_accuracy=np.array(train_accuracy),
test_accuracy=np.array(test_accuracy),
train_losses=np.array(train_losses),
test_losses=np.array(test_losses),
)
# end TB session:
tb.close()
# print model name:
logger.info("")
logger.info(f"Saved model: {model_name}_{epoch}Epoch_{current}")
if save_model:
os.makedirs(trained_models_path, exist_ok=True)
torch.save(
model,
os.path.join(
trained_models_path,
f"{model_name}_{epoch}Epoch_{current}.pt",
),
)
if __name__ == "__main__":
argh.dispatch_command(main)