diff --git a/functions/make_cnn_v2.py b/functions/make_cnn_v2.py index db4eba1..ae4b77f 100644 --- a/functions/make_cnn_v2.py +++ b/functions/make_cnn_v2.py @@ -174,6 +174,31 @@ def make_cnn( ) layer_counter += 1 + if softmax_enable[i]: + cnn.append( + SoftmaxPower( + dim=1, + power=float(softmax_power), + mean_mode=bool(softmax_meanmode), + no_input_mode=bool(softmax_no_input_mode), + ) + ) + + cnn[-1].train_bias = False + cnn[-1].train_weights = False + + temp_image = cnn[layer_counter](temp_image) + logger.info( + ( + f"After layer {layer_counter} (Softmax Power Layer): {int(temp_image.shape[1])}, " + f"{int(temp_image.shape[2])}, " + f"{int(temp_image.shape[3])}, " + f"train bias: {cnn[-1].train_bias}, " + f"train weights: {cnn[-1].train_weights} " + ) + ) + layer_counter += 1 + if (pooling_kernel_size[i] > 0) and (pooling_stride[i] > 0): setting_understood = False if pooling_type.upper() == str("max").upper(): @@ -209,30 +234,6 @@ def make_cnn( ) layer_counter += 1 - if softmax_enable[i]: - cnn.append( - SoftmaxPower( - dim=1, - power=float(softmax_power), - mean_mode=bool(softmax_meanmode), - no_input_mode=bool(softmax_no_input_mode), - ) - ) - - cnn[-1].train_bias = False - cnn[-1].train_weights = False - - temp_image = cnn[layer_counter](temp_image) - logger.info( - ( - f"After layer {layer_counter} (Softmax Power Layer): {int(temp_image.shape[1])}, " - f"{int(temp_image.shape[2])}, " - f"{int(temp_image.shape[3])}, " - f"train bias: {cnn[-1].train_bias}, " - f"train weights: {cnn[-1].train_weights} " - ) - ) - layer_counter += 1 # Output layer cnn.append(