diff --git a/optimal_stimulus.py b/optimal_stimulus.py new file mode 100644 index 0000000..cfcd0b5 --- /dev/null +++ b/optimal_stimulus.py @@ -0,0 +1,158 @@ +import torch +import matplotlib.pyplot as plt +import matplotlib.patches as patch +import matplotlib as mpl +from functions.analyse_network import analyse_network + +mpl.rcParams["text.usetex"] = True +mpl.rcParams["font.family"] = "serif" + + +# define parameters +num_iterations: int = 100000 +learning_rate: float = 0.1 +apply_input_mask: bool = True +mark_region_in_plot: bool = False +sheduler_patience: int = 500 +sheduler_factor: float = 0.9 +sheduler_eps = 1e-08 +target_image_active: float = 1e4 + +# path to NN +nn = "network_0_seed0_Coignless_83Epoch_2807-1455" +PATH = f"./trained_models/{nn}.pt" +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + + +# load and eval model +model = torch.load(PATH).to(device) +model.eval() +print("Full network:") +print(model) +print("") + +# enter index to plot: +idx = int(input("Please select layer: ")) +print(f"Selected layer {idx}:") +assert idx < len(model) +model = model[: idx + 1] + +# random input +input_img = torch.randn(1, 200, 200).to(device) +input_img = input_img.unsqueeze(0) +input_img.requires_grad_(True) # type: ignore + +input_shape = input_img.shape +assert input_shape[-2] == input_shape[-1] +coordinate_list, layer_type_list, pixel_used = analyse_network( + model=model, input_shape=int(input_shape[-1]) +) + +output_shape = model(input_img).shape +target_image = torch.zeros( + (*output_shape,), dtype=input_img.dtype, device=input_img.device +) + +input_parameter = torch.nn.Parameter(input_img) + + +print( + ( + f"Available max positions: f:{target_image.shape[1]} " + f"x:{target_image.shape[2]} y:{target_image.shape[3]}" + ) +) + +# select neuron and plot for all feature maps (?) +neuron_f = int(input("Please select neuron_f: ")) +neuron_x = target_image.shape[2] // 2 +neuron_y = target_image.shape[3] // 2 +print(f"Selected neuron {neuron_f}, {neuron_x}, {neuron_y}") + +# Input mask -> +active_input_x = coordinate_list[-1][:, neuron_x].clone() +active_input_y = coordinate_list[-1][:, neuron_y].clone() + +input_mask: torch.Tensor = torch.zeros_like(input_img) + +input_mask[ + :, + :, + active_input_x.type(torch.int64).unsqueeze(-1), + active_input_y.type(torch.int64).unsqueeze(0), +] = 1 + +rect_x = [int(active_input_x.min()), int(active_input_x.max())] +rect_y = [int(active_input_y.min()), int(active_input_y.max())] +# <- Input mask + +if apply_input_mask: + with torch.no_grad(): + input_img *= input_mask + + +optimizer = torch.optim.Adam([{"params": input_parameter}], lr=learning_rate) + +scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( + optimizer, + patience=sheduler_patience, + factor=sheduler_factor, + eps=sheduler_eps * 0.1, +) + +target_image[0, neuron_f, neuron_x, neuron_y] = target_image_active + +counter: int = 0 +while (optimizer.param_groups[0]["lr"] > sheduler_eps) and (counter < num_iterations): + optimizer.zero_grad() + + output = model(input_parameter) + + loss = torch.nn.functional.mse_loss(output, target_image) + loss.backward() + + if counter % 1000 == 0: + print( + f"{counter} : loss={float(loss):.3e} lr={optimizer.param_groups[0]['lr']:.3e}" + ) + + optimizer.step() + + if apply_input_mask: + with torch.no_grad(): + input_parameter.data[torch.where(input_mask == 0)] = 0.0 + + with torch.no_grad(): + max_data = torch.abs(input_parameter.data).max() + if max_data > 1.0: + input_parameter.data /= max_data + + if ( + torch.isfinite(input_parameter.data).sum().cpu() + != torch.tensor(input_parameter.data.size()).prod() + ): + print(f"Found NaN in step: {counter}, use a smaller initial lr") + exit() + + scheduler.step(float(loss)) + counter += 1 + +# plot image: +_, ax = plt.subplots() + +ax.imshow(input_img.squeeze().detach().cpu().numpy(), cmap="gray") + +if mark_region_in_plot: + edgecolor = "sienna" + kernel = patch.Rectangle( + (rect_y[0], rect_x[0]), + int(rect_y[1] - rect_y[0]), + int(rect_x[1] - rect_x[0]), + linewidth=1.2, + edgecolor=edgecolor, + facecolor="none", + ) + ax.add_patch(kernel) + + +plt.show(block=True)